Quartic Box-Spline Reconstruction on the BCC Lattice Pacific Graphics 2012 (invited TVCG presentation)

Minho Kim

University of Seoul School of Computer Science

13 Sep. 2012

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Table of contents

Introduction

Previous Work

Background

Quartic Box-Spline on the BCC Lattice

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Results and Analysis

Conclusion

References

Outline

Introduction

Previous Work

Background

Quartic Box-Spline on the BCC Lattice

Results and Analysis

Conclusion

References

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○</p>

Objective

An efficient reconstruction scheme for BCC volume datasets.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ の Q ()

Objective

An efficient reconstruction scheme for BCC volume datasets.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Contribution

A novel reconstruction scheme with

Objective

An efficient reconstruction scheme for BCC volume datasets.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Contribution

- A novel reconstruction scheme with
 - improved reconstruction quality and

Objective

An efficient reconstruction scheme for BCC volume datasets.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Contribution

- A novel reconstruction scheme with
 - improved reconstruction quality and
 - faster evaluation on the CPU.

Objective

An efficient reconstruction scheme for BCC volume datasets.

Contribution

- A novel reconstruction scheme with
 - improved reconstruction quality and
 - faster evaluation on the CPU.
- In-depth comparison and analysis of box-spline-based schemes.

Outline

Introduction

Previous Work

Background

Quartic Box-Spline on the BCC Lattice

Results and Analysis

Conclusion

References

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ■ のへで

▲□▶▲□▶▲≣▶▲≣▶ ≣ の�?

Box-spline-based reconstruction schemes

- Box-spline-based reconstruction schemes
 - Quartic 7-direction box-spline on the Cartesian lattice by Peters [1994]

- Box-spline-based reconstruction schemes
 - Quartic 7-direction box-spline on the Cartesian lattice by Peters [1994]

• Quintic 8-direction box-spline on the BCC lattice by Entezari et al. [2004]

- Box-spline-based reconstruction schemes
 - Quartic 7-direction box-spline on the Cartesian lattice by Peters [1994]
 - Quintic 8-direction box-spline on the BCC lattice by Entezari et al. [2004]
 - Tri-cubic B-spline on the BCC lattice by Csébfalvi and Hadwiger [2006]

- Box-spline-based reconstruction schemes
 - Quartic 7-direction box-spline on the Cartesian lattice by Peters [1994]
 - Quintic 8-direction box-spline on the BCC lattice by Entezari et al. [2004]
 - Tri-cubic B-spline on the BCC lattice by Csébfalvi and Hadwiger [2006]
 - Cubic 6-direction box-spline on the FCC lattice by Kim et al. [2008]

Outline

Introduction

Previous Work

Background

Quartic Box-Spline on the BCC Lattice

Results and Analysis

Conclusion

References

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Reconstructing a continuous signal from discrete dataset.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Reconstructing a continuous signal from discrete dataset.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Reconstruction filter + Sampling lattice

- Reconstructing a continuous signal from discrete dataset.
- Reconstruction filter + Sampling lattice
- The optimal sampling lattice is the dual of the densest sphere packing lattice. (Petersen and Middleton [1962])

- Reconstructing a continuous signal from discrete dataset.
- Reconstruction filter + Sampling lattice
- The optimal sampling lattice is the dual of the densest sphere packing lattice. (Petersen and Middleton [1962])
 → The optimal 3D sampling lattice is the BCC lattice.

- Reconstructing a continuous signal from discrete dataset.
- Reconstruction filter + Sampling lattice
- The optimal sampling lattice is the dual of the densest sphere packing lattice. (Petersen and Middleton [1962])
 → The optimal 3D sampling lattice is the BCC lattice.

Efficient reconstruction filter?

- Reconstructing a continuous signal from discrete dataset.
- Reconstruction filter + Sampling lattice
- The optimal sampling lattice is the dual of the densest sphere packing lattice. (Petersen and Middleton [1962])
 → The optimal 3D sampling lattice is the BCC lattice.
- Efficient reconstruction filter? \rightarrow Box-spline filters are good candidates.

<ロ> <@> < E> < E> E のQの

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

The optimal 3D sampling lattice

- The optimal 3D sampling lattice
- Generator matrix

$$\begin{bmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三三 - のへで

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Dual lattice of the BCC lattice

▶ Dual lattice of the BCC lattice → Sampling on the BCC lattice is equivalent to replicating spectrum on the FCC lattice.

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

- ▶ Dual lattice of the BCC lattice → Sampling on the BCC lattice is equivalent to replicating spectrum on the FCC lattice.
- Generator matrix

$$\left[\begin{array}{rrrr} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right]$$

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @
Box-Splines: Definition

(ロ)、(型)、(E)、(E)、(E)、(O)()

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

x

x

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ の Q ()

x

Finite support defined by Minkowski sum of the directions.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Finite support defined by Minkowski sum of the directions.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● ○○

 Piecewise polynomial of degree (# of directions dim ran =).

- Finite support defined by Minkowski sum of the directions.
- Piecewise polynomial of degree (# of directions dim ran \mathbf{\exist}).
- Polynomial pieces are delineated by the shifts of the *knot* planes (Hyperplanes spanned by the directions of Ξ).

- Finite support defined by Minkowski sum of the directions.
- Piecewise polynomial of degree (# of directions dim ran \vec{\vec{a}}).
- Polynomial pieces are delineated by the shifts of the *knot* planes (Hyperplanes spanned by the directions of Ξ).
- Polynomial pieces join $C^{\rho(\Xi)-2}$.
 - $\rho(\Xi) := \min \# Z$, $Z \subset \Xi$, such that $\Xi \backslash Z$ does not span \mathbb{R}^n .

(ロ)、(型)、(E)、(E)、(E)、(O)()

• Convolution with a box-spline filter M_{Ξ} :

$$\sum_{\boldsymbol{j}\in \boldsymbol{G}\mathbb{Z}^n} V(\boldsymbol{j}) M_{\boldsymbol{\Xi}}(\boldsymbol{x}-\boldsymbol{j}).$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

• V: discrete dataset on $G\mathbb{Z}^n$

$$\sum_{\boldsymbol{j}\in \boldsymbol{G}\mathbb{Z}^n} V(\boldsymbol{j}) M_{\boldsymbol{\Xi}}(\boldsymbol{x}-\boldsymbol{j}).$$

- V: discrete dataset on $G\mathbb{Z}^n$
- Evaluation at x.

$$\sum_{\boldsymbol{j}\in \boldsymbol{G}\mathbb{Z}^n} V(\boldsymbol{j}) M_{\boldsymbol{\Xi}}(\boldsymbol{x}-\boldsymbol{j}).$$

- V: discrete dataset on $G\mathbb{Z}^n$
- Evaluation at x.

$$\sum_{\boldsymbol{j}\in \boldsymbol{G}\mathbb{Z}^n} V(\boldsymbol{j}) M_{\boldsymbol{\Xi}}(\boldsymbol{x}-\boldsymbol{j}).$$

- V: discrete dataset on $G\mathbb{Z}^n$
- Evaluation at x.

$$\sum_{\boldsymbol{j} \in \boldsymbol{G}\mathbb{Z}^n} V(\boldsymbol{j}) M_{\boldsymbol{\Xi}}(\boldsymbol{x} - \boldsymbol{j})$$
$$= V(\boldsymbol{j}_1) M_{\boldsymbol{\Xi}}(\boldsymbol{x} - \boldsymbol{j}_1)$$

• Convolution with a box-spline filter M_{Ξ} :

$$\sum_{\boldsymbol{j}\in \boldsymbol{G}\mathbb{Z}^n} V(\boldsymbol{j}) M_{\boldsymbol{\Xi}}(\boldsymbol{x}-\boldsymbol{j}).$$

- V: discrete dataset on $G\mathbb{Z}^n$
- Evaluation at x.

$$\sum_{\boldsymbol{j} \in G\mathbb{Z}^n} V(\boldsymbol{j}) M_{\Xi}(\boldsymbol{x} - \boldsymbol{j})$$
$$= V(\boldsymbol{j}_1) M_{\Xi}(\boldsymbol{x} - \boldsymbol{j}_1)$$
$$+ V(\boldsymbol{j}_2) M_{\Xi}(\boldsymbol{x} - \boldsymbol{j}_2)$$

・ロト・日本・日本・日本・日本・日本

► Convolution with a box-spline filter M_Ξ:

$$\sum_{\boldsymbol{j}\in \boldsymbol{G}\mathbb{Z}^n} V(\boldsymbol{j}) M_{\boldsymbol{\Xi}}(\boldsymbol{x}-\boldsymbol{j}).$$

- V: discrete dataset on $G\mathbb{Z}^n$
- Evaluation at x.

$$\sum_{\boldsymbol{j}\in \boldsymbol{G}\mathbb{Z}^n} V(\boldsymbol{j}) M_{\boldsymbol{\Xi}}(\boldsymbol{x}-\boldsymbol{j}).$$

- V: discrete dataset on $G\mathbb{Z}^n$
- Evaluation at x.

$$\sum_{\boldsymbol{j} \in G\mathbb{Z}^n} V(\boldsymbol{j}) M_{\Xi}(\boldsymbol{x} - \boldsymbol{j})$$
$$= V(\boldsymbol{j}_1) M_{\Xi}(\boldsymbol{x} - \boldsymbol{j}_1)$$
$$+ V(\boldsymbol{j}_2) M_{\Xi}(\boldsymbol{x} - \boldsymbol{j}_2)$$
$$+ V(\boldsymbol{j}_3) M_{\Xi}(\boldsymbol{x} - \boldsymbol{j}_3)$$
$$+ V(\boldsymbol{j}_4) M_{\Xi}(\boldsymbol{x} - \boldsymbol{j}_4)$$

► Convolution with a box-spline filter M_Ξ:

$$\sum_{\boldsymbol{j}\in \boldsymbol{G}\mathbb{Z}^n} V(\boldsymbol{j}) M_{\boldsymbol{\Xi}}(\boldsymbol{x}-\boldsymbol{j}).$$

- V: discrete dataset on $G\mathbb{Z}^n$
- Evaluation at x.

 $\sum_{j \in G\mathbb{Z}^n} V(j) M_{\Xi}(x - j)$ = $V(j_1) M_{\Xi}(x - j_1)$ + $V(j_2) M_{\Xi}(x - j_2)$ + $V(j_3) M_{\Xi}(x - j_3)$ + $V(j_4) M_{\Xi}(x - j_4)$ + $V(j_5) M_{\Xi}(x - j_5)$

$$\sum_{\boldsymbol{j}\in \boldsymbol{G}\mathbb{Z}^n} V(\boldsymbol{j}) M_{\boldsymbol{\Xi}}(\boldsymbol{x}-\boldsymbol{j}).$$

- V: discrete dataset on $G\mathbb{Z}^n$
- Evaluation at x.

$$\sum_{j \in G\mathbb{Z}^n} V(j) M_{\Xi}(x - j)$$

= $V(j_1) M_{\Xi}(x - j_1)$
+ $V(j_2) M_{\Xi}(x - j_2)$
+ $V(j_3) M_{\Xi}(x - j_3)$
+ $V(j_4) M_{\Xi}(x - j_4)$
+ $V(j_5) M_{\Xi}(x - j_5)$
+ $V(j_6) M_{\Xi}(x - j_6)$

► Convolution with a box-spline filter M_Ξ:

$$\sum_{\boldsymbol{j}\in \boldsymbol{G}\mathbb{Z}^n} V(\boldsymbol{j}) M_{\boldsymbol{\Xi}}(\boldsymbol{x}-\boldsymbol{j}).$$

- V: discrete dataset on $G\mathbb{Z}^n$
- Evaluation at x.

 $\sum V(\boldsymbol{j}) M_{\boldsymbol{\Xi}}(\boldsymbol{x} - \boldsymbol{j})$ $i \in G\mathbb{Z}^n$ $= V(\mathbf{j}_1) M_{\Xi}(\mathbf{x} - \mathbf{j}_1)$ $+V(\mathbf{j}_2)M_{\Xi}(\mathbf{x}-\mathbf{j}_2)$ $+V(\mathbf{j}_3)M_{\mathbf{\Xi}}(\mathbf{x}-\mathbf{j}_3)$ $+V(\mathbf{j}_{4})M_{\Xi}(\mathbf{x}-\mathbf{j}_{4})$ $+V(j_{5})M_{\Xi}(x-j_{5})$ $+V(\mathbf{j}_6)M_{\Xi}(\mathbf{x}-\mathbf{j}_6)$ $+V(j_{7})M_{\Xi}(x-j_{7})$

(ロ)、(型)、(E)、(E)、(E)、(O)()

 Stencils: Relative data locations required for evaluating an input point.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

 Stencils: Relative data locations required for evaluating an input point.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

 Different stencil for each shift-invariant polynomial piece.

- Stencils: Relative data locations required for evaluating an input point.
- Different stencil for each shift-invariant polynomial piece.

 Stencils: Relative data locations required for evaluating an input point.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のので

 Different stencil for each shift-invariant polynomial piece.

- Stencils: Relative data locations required for evaluating an input point.
- Different stencil for each shift-invariant polynomial piece.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Stencils: Relative data locations required for evaluating an input point.
- Different stencil for each shift-invariant polynomial piece.

- Stencils: Relative data locations required for evaluating an input point.
- Different stencil for each shift-invariant polynomial piece.

Symmetric patterns for symmetric box-splines.

▲□▶▲□▶▲≣▶▲≣▶ ≣ のQで

Better approximation can be achieved by applying a discrete quasi-interpolation prefilter q beforehand:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Better approximation can be achieved by applying a discrete quasi-interpolation prefilter q beforehand:

$$\sum_{\boldsymbol{j} \in \boldsymbol{G}\mathbb{Z}^n} \left(V \star q \right) (\boldsymbol{j}) M_{\boldsymbol{\Xi}}(\boldsymbol{x} - \boldsymbol{j})$$

 Better approximation can be achieved by applying a discrete quasi-interpolation prefilter q beforehand:

$$\sum_{\boldsymbol{j} \in \boldsymbol{G}\mathbb{Z}^n} \left(V \star q \right) \left(\boldsymbol{j} \right) M_{\boldsymbol{\Xi}}(\boldsymbol{x} - \boldsymbol{j})$$

*: discrete convolution

$$(V\star q)(\boldsymbol{j}) := \sum_{\boldsymbol{k}\in \boldsymbol{G}\mathbb{Z}^n} V(\boldsymbol{k}) q(\boldsymbol{j}-\boldsymbol{k})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Better approximation can be achieved by applying a discrete quasi-interpolation prefilter q beforehand:

$$\sum_{\boldsymbol{j} \in \boldsymbol{G}\mathbb{Z}^n} \left(V \star q \right) \left(\boldsymbol{j} \right) M_{\boldsymbol{\Xi}}(\boldsymbol{x} - \boldsymbol{j})$$

*: discrete convolution

$$(V\star q)(\boldsymbol{j}):=\sum_{\boldsymbol{k}\in \boldsymbol{G}\mathbb{Z}^n}V(\boldsymbol{k})q(\boldsymbol{j}-\boldsymbol{k})$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

 Reduces the approximation order by annihilating all the lower terms of the Taylor expansion of the input signal.

Box-Splines: Summary

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Box-Splines: Summary

 Lower (polynomial) degree than B-splines of the same approximation power

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○
Lower (polynomial) degree than B-splines of the same approximation power

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Complicated spline evaluation

- Lower (polynomial) degree than B-splines of the same approximation power
- Complicated spline evaluation → Can be simplified by leveraging symmetries.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Lower (polynomial) degree than B-splines of the same approximation power
- Complicated spline evaluation → Can be simplified by leveraging symmetries.
- Can be easily constructed on non-Cartesian lattices using lattice directions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- Lower (polynomial) degree than B-splines of the same approximation power
- Complicated spline evaluation → Can be simplified by leveraging symmetries.
- Can be easily constructed on non-Cartesian lattices using lattice directions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

"Box Splines" by de Boor et al. [1993]

Outline

Introduction

Previous Work

Background

Quartic Box-Spline on the BCC Lattice

Results and Analysis

Conclusion

References

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

(ロ) (雪) (ミ) (ミ) ミ (つ)

¹ Tri-cubic B-spline by Csébfalvi and Hadwiger [2006]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ の Q ()

¹ Tri-cubic B-spline by Csébfalvi and Hadwiger [2006]

¹ Tri-cubic B-spline by Csébfalvi and Hadwiger [2006]

- ¹ Tri-cubic B-spline by Csébfalvi and Hadwiger [2006]
- ² 8-direction box-spline by Entezari et al. [2004]

- ¹ Tri-cubic B-spline by Csébfalvi and Hadwiger [2006]
- ² 8-direction box-spline by Entezari et al. [2004]

- ¹ Tri-cubic B-spline by Csébfalvi and Hadwiger [2006]
- ² 8-direction box-spline by Entezari et al. [2004]

- ¹ Tri-cubic B-spline by Csébfalvi and Hadwiger [2006]
- ² 8-direction box-spline by Entezari et al. [2004]
- ³ This work

¹ Tri-cubic B-spline by Csébfalvi and Hadwiger [2006]

- ² 8-direction box-spline by Entezari et al. [2004]
- ³ This work

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Filter bcc12 bcc8 bcc7

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ の Q ()

Filter	bcc12	bcc8	bcc7
Approximation order	4	4	4

Filter	bcc12	bcc8	bcc7
Approximation order	4	4	4
(Polynomial) Degree	9	5	4

Filter	bcc12	bcc8	bcc7
Approximation order	4	4	4
(Polynomial) Degree	9	5	4
Volume of support	512	128	120

Filter	bcc12	bcc8	bcc7
Approximation order	4	4	4
(Polynomial) Degree	9	5	4
Volume of support	512	128	120
Stencil size	128	32	30

-

Filter	bcc12	bcc8	bcc7
Approximation order	4	4	4
(Polynomial) Degree	9	5	4
Volume of support	512	128	120
Stencil size	128	32	30
Riesz basis?	no	yes	no

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Level Sets (bcc8 vs. bcc7)

Level Sets (bcc8 vs. bcc7)

• Level sets of 10^{-1} , 10^{-2} , 10^{-3} , and 10^{-5} .

Knot Planes

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Knot Planes

Knot Planes

(4日) (個) (目) (目) (目) (の)

 $2\mathbb{Z}^3 + (1, 1, 1) + [0, 1]^3$

 $2\mathbb{Z}^3 + (1, 1, 1) + [0, 1]^3$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

 $2\mathbb{Z}^{3} + (0, 1, 1) + [0, 1]^{3}$

 $2\mathbb{Z}^3 + (1,0,0) + [0,1]^3$ $2\mathbb{Z}^3 + (0,1,1) + [0,1]^3$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

 $2\mathbb{Z}^3 + (1, 0, 1) + [0, 1]^3$

 $2\mathbb{Z}^3 + (1, 0, 1) + [0, 1]^3$

 $2\mathbb{Z}^3 + (0,0,1) + [0,1]^3$ $2\mathbb{Z}^3 + (1,1,0) + [0,1]^3$

 $2\mathbb{Z}^3 + (0,0,1) + [0,1]^3$ $2\mathbb{Z}^3 + (1,1,0) + [0,1]^3$
Stencil

(ロ)、(型)、(E)、(E)、(E)、(O)()

Stencil

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

• Reference tetrahedron with vertices $\{(0,0,0), (1,0,0), (1,1,0), (1,1,1)\}.$

Stencil

- ▶ Reference tetrahedron with vertices {(0,0,0), (1,0,0), (1,1,0), (1,1,1)}.
- ▶ 30 data values are required for evaluation.

<ロ> <@> < E> < E> E のQの

function EvaluateQuartic(V, x)

function EvaluateQuartic(V, x)

Find the reflection matrix R that maps the cube of type $k := (\lfloor x \rfloor \text{ modulo } 2)$ to the cube containing the reference tetrahedron.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

function EvaluateQuartic(V, x)

Find the reflection matrix R that maps the cube of type $k := (\lfloor x \rfloor \text{ modulo } 2)$ to the cube containing the reference tetrahedron.

Find (among six) the tetrahedron containing $R(x - \lfloor x \rfloor)$ by testing against three knot planes inside the cube.

function EvaluateQuartic(V, x)

Find the reflection matrix R that maps the cube of type $k := (\lfloor x \rfloor \text{ modulo } 2)$ to the cube containing the reference tetrahedron.

Find (among six) the tetrahedron containing $R(x - \lfloor x \rfloor)$ by testing against three knot planes inside the cube.

Find the permutation matrix P that maps the tetrahedron to the reference tetrahedron.

function EvaluateQuartic(V, x)

Find the reflection matrix R that maps the cube of type $k := (\lfloor x \rfloor \text{ modulo } 2)$ to the cube containing the reference tetrahedron.

Find (among six) the tetrahedron containing $R(x - \lfloor x \rfloor)$ by testing against three knot planes inside the cube.

Find the permutation matrix P that maps the tetrahedron to the reference tetrahedron.

 $\dot{\pmb{x}} \leftarrow \pmb{P} \pmb{R}(\pmb{x} - \lfloor \pmb{x} \rfloor)$

function EvaluateQuartic(V, x)

Find the reflection matrix R that maps the cube of type $k := (\lfloor x \rfloor \text{ modulo } 2)$ to the cube containing the reference tetrahedron.

Find (among six) the tetrahedron containing $R(x - \lfloor x \rfloor)$ by testing against three knot planes inside the cube.

Find the permutation matrix P that maps the tetrahedron to the reference tetrahedron.

 $\dot{\boldsymbol{x}} \leftarrow \boldsymbol{P}\boldsymbol{R}(\boldsymbol{x} - [\boldsymbol{x}])$ for i = 1 to 30 do

function EvaluateQuartic(V, x)

Find the reflection matrix R that maps the cube of type $k := (\lfloor x \rfloor \text{ modulo } 2)$ to the cube containing the reference tetrahedron.

Find (among six) the tetrahedron containing $R(x - \lfloor x \rfloor)$ by testing against three knot planes inside the cube.

Find the permutation matrix P that maps the tetrahedron to the reference tetrahedron.

 $\dot{x} \leftarrow PR(x - \lfloor x \rfloor)$ for i = 1 to 30 do $j \leftarrow \mathcal{J}_7(i)$

function EvaluateQuartic(V, x)

Find the reflection matrix R that maps the cube of type $k := (\lfloor x \rfloor \text{ modulo } 2)$ to the cube containing the reference tetrahedron.

Find (among six) the tetrahedron containing $R(x - \lfloor x \rfloor)$ by testing against three knot planes inside the cube.

Find the permutation matrix P that maps the tetrahedron to the reference tetrahedron.

$$\begin{split} \dot{\boldsymbol{x}} &\leftarrow \boldsymbol{P}\boldsymbol{R}(\boldsymbol{x} - [\boldsymbol{x}]) \\ \text{for } i = 1 \text{ to } 30 \text{ do} \\ \boldsymbol{j} &\leftarrow \mathcal{J}_7(i) \\ c_i &\leftarrow V(\boldsymbol{k} + (\boldsymbol{P}\boldsymbol{R})^{-1}\boldsymbol{j}) \\ \text{end for} \end{split}$$

function EvaluateQuartic(V, x)

Find the reflection matrix R that maps the cube of type $k := (\lfloor x \rfloor \text{ modulo } 2)$ to the cube containing the reference tetrahedron.

Find (among six) the tetrahedron containing $R(x - \lfloor x \rfloor)$ by testing against three knot planes inside the cube.

Find the permutation matrix P that maps the tetrahedron to the reference tetrahedron.

$$\begin{split} \dot{\boldsymbol{x}} &\leftarrow \boldsymbol{P}\boldsymbol{R}(\boldsymbol{x} - [\boldsymbol{x}]) \\ \text{for } i = 1 \text{ to } 30 \text{ do} \\ \boldsymbol{j} &\leftarrow \mathcal{J}_7(i) \\ c_i &\leftarrow V(\boldsymbol{k} + (\boldsymbol{P}\boldsymbol{R})^{-1}\boldsymbol{j}) \end{split}$$

end for

Evaluate the constructed polynomial piece.

end function

Outline

Introduction

Previous Work

Background

Quartic Box-Spline on the BCC Lattice

Results and Analysis

Conclusion

References

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 めんぐ

<ロ> <合> < => < => < => < => < => < <</p>

 \bullet 10⁷ points randomly generated inside each volume.

- 10^7 points randomly generated inside each volume.
- System specifications:
 - Ubuntu 11.04/
 - quad-core Intel[®] Xeon[®] CPU X5550 @2.67GHz with L2 Cache 8MB/

6GB main memory)

- 10^7 points randomly generated inside each volume.
- System specifications:
 - Ubuntu 11.04/
 - quad-core Intel[®] Xeon[®] CPU X5550 @2.67GHz with L2 Cache 8MB/
 - 6GB main memory)

dataset	bcc12	bcc8 (<i>t</i> ₈)	bcc7 (<i>t</i> ₇)	t_7/t_8 (%)
$21^3 \times 2$	3.83445	2.09095	1.55458	74.3
$27^3 \times 2$	4.24062	2.24015	1.69082	75.5
$32^3 \times 2$	4.31606	2.29917	1.75987	76.5
$37^3 \times 2$	4.43997	2.35084	1.79927	76.5
$45^3 \times 2$	4.41845	2.35842	1.84051	78.0
$57^3 \times 2$	4.58235	2.42169	1.88100	77.7
$77^3 \times 2$	6.46921	3.24693	2.66483	82.1
$93^3 \times 2$	7.26688	3.61189	2.98389	82.6
$117^3 \times 2$	7.82863	3.91083	3.18585	81.5

in seconds

Proposed by Marschner and Lobb [1994]

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

- Proposed by Marschner and Lobb [1994]
- Smoothing metric

$$S(\phi) := 1 - \frac{1}{|N_n|} \int_{N_n} |\widehat{\phi}|^2 dV$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

- Proposed by Marschner and Lobb [1994]
- Smoothing metric

$$S(\phi) := 1 - \frac{1}{|N_n|} \int_{N_n} |\widehat{\phi}|^2 dV$$

Post-aliasing metric

$$P(\phi) := \frac{1}{|N_n|} \int_{\overline{N_n}} |\widehat{\phi}|^2 dV$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Proposed by Marschner and Lobb [1994]
- Smoothing metric

$$S(\phi) := 1 - \frac{1}{|N_n|} \int_{N_n} |\widehat{\phi}|^2 dV$$

Post-aliasing metric

$$P(\phi) := \frac{1}{|N_n|} \int_{\overline{N_n}} |\widehat{\phi}|^2 dV$$

filter	smoothing	post-aliasing
bcc12	0.94495	0.00004
bcc8	0.85287	0.00399
bcc7	0.85488	0.00355

 Spectra evaluated on three planes on the FCC lattice in the frequency domain.

► Lower spectra are clamped to the range [0,0.0011].

► Lower spectra are clamped to the range [0,0.0011].

• Lower spectra are clamped to the range [0, 0.0011]. ミト ▲ ミト ミー の へ ()

< 口 > < 同 >

Spectra

• Lower spectra are clamped to the range [0, 0.0011].

Spectra

• Lower spectra are clamped to the range [0, 0.0011].

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Spectra

• Lower spectra are clamped to the range [0, 0.0011].

Proposed by Blu and Unser [1999]

- Proposed by Blu and Unser [1999]
- Average L_2 error according to sampling frequency ω

$$E(\boldsymbol{\omega}) := \underbrace{1 - \frac{|\widehat{\phi}(\boldsymbol{\omega})|^2}{\widehat{a_{\phi}}(\boldsymbol{\omega})}}_{E_{\min}(\boldsymbol{\omega})} + \underbrace{\widehat{a_{\phi}}(\boldsymbol{\omega}) \left| Q(e^{j\boldsymbol{\omega}}) - \frac{\widehat{\phi}^*(\boldsymbol{\omega})}{\widehat{a_{\phi}}(\boldsymbol{\omega})} \right|^2}_{E_{\mathsf{res}}(\boldsymbol{\omega})}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Proposed by Blu and Unser [1999]
- Average L_2 error according to sampling frequency $oldsymbol{\omega}$

$$E(\boldsymbol{\omega}) := \underbrace{1 - \frac{|\widehat{\phi}(\boldsymbol{\omega})|^2}{\widehat{a_{\phi}}(\boldsymbol{\omega})}}_{E_{\min}(\boldsymbol{\omega})} + \underbrace{\widehat{a_{\phi}}(\boldsymbol{\omega}) \left| Q(e^{j\boldsymbol{\omega}}) - \frac{\widehat{\phi}^*(\boldsymbol{\omega})}{\widehat{a_{\phi}}(\boldsymbol{\omega})} \right|^2}_{E_{\operatorname{res}}(\boldsymbol{\omega})}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• $\widehat{a_{\phi}}$: autocorrelation function of ϕ

- Proposed by Blu and Unser [1999]
- Average L_2 error according to sampling frequency $oldsymbol{\omega}$

$$E(\boldsymbol{\omega}) := \underbrace{1 - \frac{|\widehat{\phi}(\boldsymbol{\omega})|^2}{\widehat{a_{\phi}}(\boldsymbol{\omega})}}_{E_{\min}(\boldsymbol{\omega})} + \underbrace{\widehat{a_{\phi}}(\boldsymbol{\omega}) \left| Q(e^{j\boldsymbol{\omega}}) - \frac{\widehat{\phi}^*(\boldsymbol{\omega})}{\widehat{a_{\phi}}(\boldsymbol{\omega})} \right|^2}_{E_{\operatorname{res}}(\boldsymbol{\omega})}$$

- $\widehat{a_{\phi}}$: *autocorrelation* function of ϕ
- $Q(e^{j\omega})$ is the discrete time Fourier transform of the prefilter $q(\mathbf{k})$,

▲□▶▲□▶▲□▶▲□▶ □ のQ@
- Proposed by Blu and Unser [1999]
- Average L_2 error according to sampling frequency $oldsymbol{\omega}$

$$E(\boldsymbol{\omega}) := \underbrace{1 - \frac{|\widehat{\phi}(\boldsymbol{\omega})|^2}{\widehat{a_{\phi}}(\boldsymbol{\omega})}}_{E_{\min}(\boldsymbol{\omega})} + \underbrace{\widehat{a_{\phi}}(\boldsymbol{\omega}) \left| Q(e^{j\boldsymbol{\omega}}) - \frac{\widehat{\phi}^*(\boldsymbol{\omega})}{\widehat{a_{\phi}}(\boldsymbol{\omega})} \right|^2}_{E_{\operatorname{res}}(\boldsymbol{\omega})}$$

- $\widehat{a_{\phi}}$: autocorrelation function of ϕ
- $Q(e^{j\omega})$ is the discrete time Fourier transform of the prefilter $q(\mathbf{k})$,
- Can be computed by evaluating a box-spline filter on the lattice points.

Optimal error kernels

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Without prefiltering

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

With quasi-interpolation prefilter of type I

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

With quasi-interpolation prefilter of type II

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Optimal error kernels

Without prefiltering

With quasi-interpolation prefilter of type I

With quasi-interpolation prefilter of type II

Quality Comparison

| ◆ □ ▶ ★ □ ▶ ★ □ ▶ ↓ □ ● ● ● ● ●

Quality Comparison

Quality Comparison: bcc12 vs. bcc8 vs. bcc7 (cont'd)

・ロト・日本・モト・モー ショー ショー

Proposed by Marschner and Lobb [1994]

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 \blacktriangleright # of samples: $39^3 \times 2$

 \blacktriangleright # of samples: $31^3 \times 2$

イロト イロト イヨト イヨト

э

• # of samples: $27^3 \times 2$

• # of samples: $23^3 \times 2$

イロト イロト イヨト イヨト

32

 \blacktriangleright # of samples: $19^3 \times 2$

 $\blacktriangleright \ 39^3 \times 2$

 $\blacktriangleright \ 31^3 \times 2$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 $\blacktriangleright 27^3 \times 2$

 $\blacktriangleright 23^3 \times 2$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

ъ

・ロト ・ 日 ト ・ 日 ト ・

ъ

э

Outline

Introduction

Previous Work

Background

Quartic Box-Spline on the BCC Lattice

Results and Analysis

Conclusion

References

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ■ めるの

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Conclusion

Conclusion

A novel reconstruction scheme on the BCC lattice with

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

Conclusion

A novel reconstruction scheme on the BCC lattice with

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

better approximation power and

Conclusion

A novel reconstruction scheme on the BCC lattice with

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三里 - のへぐ

- better approximation power and
- efficient evaluation.

Conclusion

A novel reconstruction scheme on the BCC lattice with

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- better approximation power and
- efficient evaluation.

Future Work
Conclusion and Future Work

Conclusion

A novel reconstruction scheme on the BCC lattice with

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- better approximation power and
- efficient evaluation.
- Future Work
 - GPU ray-caster

Conclusion and Future Work

Conclusion

A novel reconstruction scheme on the BCC lattice with

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

- better approximation power and
- efficient evaluation.
- Future Work
 - GPU ray-caster
 - Analysis of gradient error

Conclusion and Future Work

Conclusion

A novel reconstruction scheme on the BCC lattice with

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- better approximation power and
- efficient evaluation.
- Future Work
 - GPU ray-caster
 - Analysis of gradient error
 - Improved quasi-interpolation prefilter

Outline

Introduction

Previous Work

Background

Quartic Box-Spline on the BCC Lattice

Results and Analysis

Conclusion

References

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 めんぐ

References I

- T. Blu and M. Unser. Quantitative Fourier analysis of approximation techniques: Part I - interpolators and projectors. *IEEE Transactions on Signal Processing*, 47(10): 2783 - 2795, Oct. 1999.
- B. Csébfalvi and M. Hadwiger. Prefiltered B-spline reconstruction for hardware-accelerated rendering of optimally sampled volumetric data. In *Vision, Modeling, and Visualization*, pages 325-332, 2006.
- C. de Boor, K. Höllig, and S. Riemenschneider. *Box splines*. Springer-Verlag New York, Inc., 1993.
- A. Entezari, R. Dyer, and T. Möller. Linear and cubic box splines for the body centered cubic lattice. In *Proceedings* of the IEEE Conference on Visualization, pages 11-18. IEEE Computer Society, 2004.

References II

- M. Kim, A. Entezari, and J. Peters. Box spline reconstruction on the face-centered cubic lattice. *IEEE Transactions on Visualization and Computer Graphics*, 14(6):1523-1530, Nov.-Dec. 2008.
- S. R. Marschner and R. J. Lobb. An evaluation of reconstruction filters for volume rendering. In *Proceedings* of the IEEE Conference on Visualization, pages 100-107, Oct. 1994. doi: 10.1109/VISUAL.1994.346331.
- J. Peters. C² surfaces built from zero sets of the 7-direction box spline. In *IMA Conference on the Mathematics of Surfaces*, pages 463-474, 1994.
- D. P. Petersen and D. Middleton. Sampling and reconstruction of wave-number-limited functions in *N*-dimensional Euclidean spaces. *Information and Control*, 5(4):279-323, 1962.