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Introduction

Objective
An efficient reconstruction scheme for BCC volume datasets.

Contribution

» A novel reconstruction scheme with

» improved reconstruction quality and
» faster evaluation on the CPU.

» In-depth comparison and analysis of box-spline-based
schemes.
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Volume Reconstruction

» Reconstructing a continuous signal from discrete dataset.
» Reconstruction filter + Sampling lattice

» The optimal sampling lattice is the dual of the densest
sphere packing lattice. (Petersen and Middleton [1962])
— The optimal 3D sampling lattice is the BCC lattice.

» Efficient reconstruction filter? — Box-spline filters are
good candidates.
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The Face-Centered Cubic (FCC) Lattice

» Dual lattice of the BCC lattice — Sampling on the BCC
lattice is equivalent to replicating spectrum on the FCC
lattice.

» Generator matrix
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Box-Splines: Definition
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» Finite support defined by Minkowski sum of the directions.

Direction matrix E = [

» Piecewise polynomial of degree (# of directions -
dimranE).
» Polynomial pieces are delineated by the shifts of the knot
planes (Hyperplanes spanned by the directions of E).
» Polynomial pieces join ¢*(&)~2,
» p(B) :=min#Z, Z c 5, such that =\ Z does not span R".
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Box-Splines: Reconstruction
» Convolution with a box-spline filter Mz=:
> Vi) Mz(z—j).

jEGL"

» V: discrete dataset on GZ"
» Evaluation at .

jEGZL™

=V(j,) M=(z - j,) * 1

+ V(i) M=(z — j,) o &

+ V(gs) Mz(z — j5)
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Box-Splines: Stencils

» Stencils: Relative data locations required for evaluating
an input point.

» Different stencil for each shift-invariant polynomial
piece.

Gy ) ) 60

» Symmetric patterns for symmetric box-splines.
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Box-Splines: Discrete Quasi-Interpolation Prefilter

» Better approximation can be achieved by applying a
discrete quasi-interpolation prefilter ¢ beforehand:

D1 (Vxq) (YM=(z— j)

jEGL™

» x: discrete convolution

(Vxq)@ = D, V(k)g(i—k)

ke GZ™

» Reduces the approximation order by annihilating all the
lower terms of the Taylor expansion of the input signal.
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Box-Splines: Summary

» Lower (polynomial) degree than B-splines of the same
approximation power

» Complicated spline evaluation — Can be simplified by
leveraging symmetries.

» Can be easily constructed on non-Cartesian lattices using
lattice directions.

» “Box Splines” by de Boor et al. [1993]
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BCC Volume Reconstruction Schemes

Filter bcc12 bcc8 bcc7
Approximation order 4 4 4
(Polynomial) Degree 9 5 4

Volume of support 512 128 120
Stencil size 128 32 30

Riesz basis? no yes no
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bcc8

bcc7
» Level sets of 10~1, 1072, 10~2, and 107°.
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Stencil

» Reference tetrahedron with vertices
{(0,0,0),(1,0,0),(1,1,0), (1,1, 1)}.
» 30 data values are required for evaluation.
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Evaluation of a Spline

function EvaluateQuartic(V, x)
Find the reflection matrix R that maps the cube of type
k := (|z| modulo 2) to the cube containing the reference
tetrahedron.
Find (among six) the tetrahedron containing R(x — |z|) by
testing against three knot planes inside the cube.
Find the permutation matrix P that maps the tetrahedron to
the reference tetrahedron.
< PR(x— |z|)
for i=1to 30 do
J<— Tz (i)
c; < V(k+ (PR)™'j)
end for
Evaluate the constructed polynomial piece.
end function
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CPU Evaluation Time

» 107 points randomly generated inside each volume.
» System specifications:
» Ubuntu 11.04/
» quad-core Intel® Xeon® CPU X5550 @2.67GHz with L2
Cache 8MB/
» 6GB main memory)

dataset  bcc12  bcce8 (&) bec7 (t7) t7/ts (%)

213 x 2 3.83445 2.09095 1.55458 74.3
273 x 2 4.24062 2.24015  1.69082 75.5
323 x2  4.31606 2.29917 1.75987 76.5
373 x 2 4.43997 2.35084 1.79927 76.5
453 x 2 4.41845 2.35842  1.84051 78.0
573 x 2 4.58235 2.42169  1.88100 77.7
773 x 2 6.46921 3.24693  2.66483 82.1
933 x 2 7.26688 3.61189  2.98389 82.6
1173 x 2 7.82863 3.91083  3.18585 81.5

» in seconds
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Integral Filter Metrics

» Proposed by Marschner and Lobb [1994]
» Smoothing metric

1

» Post-aliasing metric
1 ~
P(¢) : - [o[PdV

Nl Jw,

filter smoothing post-aliasing

bcc12  0.94495 0.00004
bcc8  0.85287 0.00399
bcc7  0.85488 0.00355
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» Spectra evaluated on three planes on the FCC lattice in
the frequency domain.
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Frequency Error Kernels

» Proposed by Blu and Unser [1999]
» Average L, error according to sampling frequency w

" 2 . "
Bw) = 1= L2 1 ) )Q(é‘”) -
;_Emin(“-’) - Ere;r(w) .

» ag: autocorrelation function of ¢
» Q(&™) is the discrete time Fourier transform of the

prefilter ¢q(k),
» Can be computed by evaluating a box-spline filter on the

lattice points.
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Quality Comparison: bcc12 vs. bcc8 vs. bcc7 (cont’d)
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