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Quartic Box-Spline Reconstruction on the BCC
Lattice

Minho Kim

Abstract—This paper presents an alternative box-spline filter for the body-centered cubic (BCC) lattice, the 7-direction quartic box-
spline M7 that has the same approximation order as the 8-direction quintic box-spline M8 but a lower polynomial degree, smaller
support, and is computationally more efficient. When applied to reconstruction with quasi-interpolation prefilters, M7 shows less
aliasing, which is verified quantitatively by integral filter metrics and frequency error kernels. To visualize and analyze distributional
aliasing characteristics, each spectrum is evaluated on the planes and lines with various orientations.

Index Terms—Volume reconstruction, BCC lattice, box-spline, quasi-interpolation.
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1 INTRODUCTION

IN multivariate signal processing, not only reconstruc-
tion filters, but also sampling lattices play an impor-

tant role in the quality of reconstruction. While com-
putationally more beneficial, the widely used Cartesian
lattice is an inefficient sampling lattice compared to other
regular sampling lattices [22].

In particular, for three-dimensional volume dataset
reconstruction, the BCC lattice, the dual of the face-
centered cubic (FCC) lattice, is the optimal sampling
lattice; i.e., it requires the fewest number of samples to
recover an isotropic band-limited signal without aliasing.
Among the BCC reconstruction filters, the 8-direction
quintic box-spline M8 is the most popular due to its
approximation power and computational efficiency [10],
[13], [14].

In this paper, we present an alternative symmetric box-
spline filter M7 on the BCC lattice that is of lower degree
but has better approximation power than M8. Moreover,
its computational cost to evaluate reconstructed splines
is lower. The contributions of this paper are

• in-depth investigation of M7 including its spline
structure, stencil (samples on the lattice required
to evaluate a spline) and the BB (Bernstein-Bézier)-
form;

• an efficient evaluation algorithm of splines; and
• detailed comparison and analysis of three recon-

struction filters in view of integral filter metrics,
frequency error kernels, and spectra visualization.

2 PREVIOUS WORKS

Petersen and Middleton [22] extended Shannon’s the-
orem to the multi-dimensional case and showed that
the optimal sampling lattice is the dual of the densest
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sphere packing lattice for a band-limited and isotropic
input signal. In dimension three, the FCC lattice is the
densest sphere packing lattice [4]; therefore its dual, the
BCC lattice, is the optimal sampling lattice.

Based on this observation, many researchers have in-
vestigated volume reconstruction on the BCC lattice us-
ing various filters. One of the most efficient filters is the
quintic box-spline proposed by Entezari et al. [10]. Not
only does it show superior reconstruction quality com-
pared to the comparable tensor-product B-spline filter on
the Cartesian lattice, but its computational cost is small
enough for real-time rendering on the GPU (Graphics
Processing Unit) thanks to the (partially) factored power
form [13]. Csébfalvi and Hadwiger [7] proposed the
tri-cubic B-spline filter M12 for reconstruction on the
BCC lattice, which has the same approximation order as
M8. While it is analytically disadvantageous due to its
higher polynomial degree and larger support, it shows
superb performance for real-time volume rendering on
the GPU thanks to its hardware-friendly tensored struc-
ture. Generalizing the hex-splines to arbitrary lattices,
Mirzargar and Entezari [19] recently proposed Voronoi
splines that can be used as reconstruction filters on both
the FCC and BCC lattices. While interesting, they are
not practical due to the lack of an efficient evaluation
algorithm. As a box-spline reconstruction filter on the
FCC lattice, Kim et al. [15] proposed the symmetric cubic
box-spline filter which has an approximation order of
three but requires only 16 samples for evaluation. The
7-direction box-spline on the Cartesian lattice, which
shares many properties with M7, was first proposed by
Peters [21] and later revisited by Entezari and Möller
[12]. The basic properties of the quartic box-spline M7

were investigated by Kim and Peters [17] but were
limited to the approximation order, linear independence
of its shifts, and the optimal quasi-interpolant.

Entezari et al. [11] derived a discrete quasi-interpolant
for M8 that provides the maximal approximation order
[8]. Csébfalvi [5] also derived various discrete quasi-
interpolants for both M12 and M8 and evaluated their
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reconstruction results.
Marschner and Lobb [18] proposed numerical filter

metrics for several types of aliasing, methods which are
useful to measure integral characteristics of filters. Blu
and Unser [1] proposed a frequency error kernel that is
useful to measure a sharp L2 error according to sampling
frequency. Csébfalvi and Domonkos [6] relied on iso-
surface and direct rendering of spectra to visualize and
analyze distributional aliasing characteristics of three-
dimensional filters. While their approach provides useful
insight, it is still challenging to visualize the detailed
distribution of the spectra since they visualize either only
one level set (isosurface rendering) or integral measures
(direct rendering).

Condat et al. [3] derived the explicit polynomial for-
mula of the three-direction box-spline using inverse
Fourier transform followed by finite differences. Entezari
et al. [13] derived the explicit polynomial formula of
M8 in the same way. Kim and Peters [16] proposed
a fast and stable algorithm to evaluate box-splines in
general, leveraging pre-computed and tabulated rational
BB-coefficients.

3 BACKGROUND

In this section, we first characterize the BCC lattice and
review box-splines, including two box-splines on the
BCC lattice. Finally we introduce the frequency error
kernel devised by Blu and Unser [1].

3.1 The BCC Lattice

An n-dimensional lattice Ln is the set of points generated
by an n × n (invertible) square generator matrix as all
integer linear combinations of its column vectors:

Ln := GZn = {Gj : G ∈ Rn×n, rankG = n, j ∈ Zn}.

Its dual lattice L∗
n is defined as

L∗
n := {x ∈ Rn : x · u ∈ Z, ∀u ∈ Ln},

and its generator matrix is G−t [4]. In multi-dimensional
signal processing, sampling a signal on a lattice Ln is
equivalent to replicating its spectrum on the dual lattice
L∗
n in the frequency domain [9].
The BCC lattice can be considered to be generated

either [4]
(i) as integer linear combinations of any three of the

four vectors from the center of a regular tetrahe-
dron to its vertices or

(ii) by inserting additional lattice points at the center
of each Cartesian grid cell.

Formally, we can define the BCC lattice with generator
matrix Gbcc as

Zbcc := GbccZ3, where Gbcc :=

 −1 1 1
1 −1 1
1 1 −1

 .

Note that detGbcc = 4. The BCC lattice is the dual of the
FCC lattice, the optimal 3D sphere packing lattice, and
hence is the optimal 3D sampling lattice [22].

We can group the lattice neighbors of a point into shells
[4] according to their distances from that point. Let Sk
be the k-th shell of the origin. For Zbcc, the Cartesian
coordinates of the first three shells are as follows:

S0 = {(0, 0, 0)},
S1 = {(±1,±1,±1)}, and (1)
S2 = {(±2, 0, 0), (0,±2, 0), (0, 0,±2)}, (2)

with squared distances 0, 3 and 4, respectively. Consid-
ering non-parallel vectors corresponding to S1 and S2,
we get two sets of vectors,

Ξ1 :=

 −1 1 1 −1
1 −1 1 −1
1 1 −1 −1

 and

Ξ2 :=

 2 0 0
0 2 0
0 0 2

 ,

which are the building blocks of the three box-spline
filters we consider.

3.2 Box-Splines

In this section, we review the basics of box-splines. For
more details, refer to de Boor et al. [8]. In the following,
a matrix also denotes a (multi)-set of column vectors
allowing multiplicity, depending on the context.

3.2.1 Definition and basic properties
A box-spline is a piecewise polynomial with finite sup-
port and certain continuity and is uniquely defined by a
direction matrix. Given an n×m (n ≤ m) direction matrix
Ξ, a box-spline MΞ can be constructed by perform-
ing consecutive directional convolutions in each column
direction. In other words, starting from the base case
(n = m),

MΞ(x) :=
1

| detΞ|
χΞ(x), x ∈ Rn

where Ξ is invertible, and χΞ(x) is the characteristic
function on the half-open parallelepiped Ξ[0, 1)m (Fig-
ure 1(a)), namely

χΞ(x) =

{
1 x ∈ Ξ[0, 1)m

0 otherwise,

a box-spline can be recursively defined as (Figure 1)

MΞ∪{ξ}(x) :=

∫ 1

0

MΞ(x− tξ)dt, ξ ∈ Rn.

Since the direction matrix Ξ uniquely defines the
box-spline MΞ, all the properties of box-splines can be
deduced from Ξ:

(i) the (total) polynomial degree of MΞ is m− n,
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Fig. 1. Construction of the box-splines with direction
matrices (a) [ 1 0

0 1 ], (b) [ 1 0 1
0 1 1 ] and (c)

[
1 0 1 −1
0 1 1 1

]
via con-

secutive directional convolutions.

(ii) the support of MΞ is defined as the Minkowski sum
of the directions of Ξ (Figure 1 and Figure 3), and

(iii) the polynomial pieces in MΞ join with Cρ(Ξ)−2

continuity, where ρ(Ξ) is the minimum number of
(column) directions of Ξ such that, when they are
removed from Ξ, the remaining columns in Ξ do
not span Rn:

ρ(Ξ) := {min
Z⊆Ξ

#Z : rank (Ξ\Z) < n}. (3)

In most cases, the centered box-spline

M c
Ξ(x) := MΞ(x+

∑
ξ∈Ξ

ξ/2)

is used for reconstruction to prevent splines from shift-
ing.

3.2.2 Reconstruction with Box-Spline Filters

In signal processing, reconstruction is the process to
recover the original signal from its discrete samples
via convolution with a reconstruction filter. Given data
samples

V : GZn → R

on the lattice GZn, we can reconstruct a continuous
spline using box-spline filter MΞ as follows:∑

j∈GZn

V (j)MΞ(x− j). (4)

To interpolate the samples, the shifts of a reconstruction
filter should be linearly independent to form a Riesz
basis. This can be easily verified for box-splines because
the shifts of MΞ on GZn,

(MΞ(· − j))j∈GZn ,

are linearly independent and form a Riesz basis if and
only if [8]

| detZ| ∈ {0, | detG|}, ∀Z ⊆ Ξ and Z is square,

since this ensures that the shifts of MΞ “minimally
overlap” one another.

Let s(x) be an n-variate continuous signal. When s(x)
is sampled on the lattice hGZn, h > 0, we can reconstruct
a spline sh(x) as follows:

sh(x) :=
∑

j∈hGZn

s(j)MΞ(x− j).

Then the approximation order L, the rate of decay of the
error as h→ 0, is defined as follows:

∥s(x)− sh(x)∥L2 :=

∫
Rn

|s(x)− sh(x)|2dx = O(hL).

While interpolation results in no error on lattice points,
in general it shows inferior L2 error. In most cases, we
can obtain better reconstruction by applying a discrete
quasi-interpolation prefilter q on the discrete dataset before
convolution: ∑

j∈GZn

(V ⋆ q)(j)MΞ(x− j)

where ⋆ denotes the discrete convolution

(V ⋆ q)(j) :=
∑

k∈GZn

V (k)q(j − k).

Then the reconstructed spline annihilates all the lower
terms of the Taylor expansion of the input signal, reduc-
ing the approximation error. The optimal approximation
order of MΞ is ρ(Ξ) (3), and such a prefilter can be found
by following the procedures of de Boor et al. [8] or Blu
and Unser [1]. See Table 1 for examples of discrete quasi-
interpolant prefilters.
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Fig. 2. Stencils (dots) of four shift-invariant polynomial
pieces (gray triangles) of a spline generated by the box-
spline defined by

[
1 0 1 −1
0 1 1 1

]
, with stencil size 7. Support

of one shift (red dot and pink octagon) is shown as an
illustration.

The polynomial pieces of a spline are delineated by
the shifts of the knot planes spanned by the directions of
Ξ (Figure 1 and Figure 2). Therefore, it is important to
determine the polynomial structure in order to evaluate
a spline. Since box-splines have finite support, for eval-
uation of a spline at x ∈ Rn, a finite number of shifts
MΞ are required. The set of such shifts is called a stencil
and is unique for each shift-invariant polynomial piece
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(Figure 2). The stencil size is the same as

vol (supp (MΞ)) /| detG|,

the (normalized) volume of the support of MΞ. Note
that a large stencil size results in slow evaluation due
to required fetch operations.

3.3 Symmetric Quintic Box-Spline on the BCC Lat-
tice
The symmetric quintic box-spline M8 on the BCC lattice
was first proposed by Entezari et al. [10] as an extension
of the symmetric quartic box-spline on the hexagonal
lattice. M8 is defined by (Table 1)

Ξ8 :=
[
Ξ1 Ξ1

]
,

i.e., the four directions corresponding to the eight lattice
points in S1 (1), as shown in Figure 3(a). Its support is
the shape of a rhombic dodecahedron (Figure 3(b) and
Figure 4(a)). The volume of the support of M8 is 128,
24 times the volume of the tetrahedron composed of
(0, 0, 0), (4, 0, 0), (0, 4, 0) and (2, 2, 2); therefore, the stencil
size is 128/| detGbcc| = 32.
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Fig. 3. The (left) directions and (right) supports of (upper)
M8 and (lower) M7.

The (total) polynomial degree of M8 is 8− 3 = 5, and
hence is quintic. Since any three directions in Ξ1 span
R3, ρ(Ξ1) = 2; therefore, ρ(Ξ8) = 4 is the approximation
order of the quintic spline. There are six types of shift-
invariant knot planes defined by Ξ8, which decompose
a spline into six shift-invariant tetrahedral polynomial
pieces, as in Figure 5. This decomposition coincides with
the Delaunay tetrahedralization of the BCC lattice by

x
y

z

(a) M8

x
y

z

(b) M7

Fig. 4. Isosurfaces of two box-splines with levels 10−1,
10−2, 10−3, and 10−5 in the first octant.

(1, 1, 1)

(2, 0, 0)

(0, 2, 0)

(0, 0, 2)

(−1, 1, 1)
(1,−1, 1)

(1, 1,−1)x

y

z

Fig. 5. Six shift-invariant (semi-regular) tetrahedra delin-
eating a spline generated by M8.

one type of (semi-regular) tetrahedron [24]. Therefore,
only one of the six shift-invariant tetrahedral polynomial
pieces needs to be considered to evaluate a spline [13],
and others can be evaluated after suitable transforma-
tion. It is easy to verify that the shifts of M8(x) on Zbcc

form a Riesz basis [17]. Two quasi-interpolation prefilters
are shown in Table 1, one of which, QI

8, was derived by
Entezari et al. [11].

3.4 Tri-Cubic B-Spline on the BCC Lattice

The tri-cubic B-spline M12 on the BCC lattice [7] is
defined by the 12 directions

Ξ12 :=
[
Ξ2 Ξ2 −Ξ2 −Ξ2

]
,

i.e., the three directions corresponding to the lattice
points in S2 (2), each with multiplicity four. Its total
polynomial degree is 12− 3 = 9, and the approximation
order is four since ρ(Ξ2) = 1; hence, ρ(Ξ12) = 4. In
addition, vol(suppM12) = 83 = 512; therefore, its stencil
size is 512/|detGbcc| = 128. The shifts of M12 do not
form a Riesz basis since | detΞ2| = 8. Note that tensor-
product B-splines with uniform knots are special cases
of box-splines.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XXX 2012 5

3.5 Frequency Error Kernels
Blu and Unser [1] proposed a frequency error kernel
formula that quantifies the average L2 error of a recon-
struction filter according to the sampling frequency. We
review it briefly here. In the following, f̂(ω) and f∗(x)
denote the Fourier transform and complex conjugate of
f(x), respectively.

Given a shift-invariant reconstruction filter ϕ, its fre-
quency error kernel is defined as [1]

E(ω) := 1− |ϕ̂(ω)|2

âϕ(ω)︸ ︷︷ ︸
Emin(ω)

+ âϕ(ω)

∣∣∣∣∣Q(ejω)− ϕ̂∗(ω)

âϕ(ω)

∣∣∣∣∣
2

︸ ︷︷ ︸
Eres(ω)

, (5)

where aϕ is the discrete autocorrelation function of ϕ
defined as

aϕ(k) :=

∫
Rn

ϕ∗(x− k)ϕ(x)dx, k ∈ Zn,

Q(ejω) is the discrete time Fourier transform of the pre-
filter q(k), and Emin(ω) denotes the minimum error that
can be obtained when the prefilter Q is the orthogonal
projector. In general, the most difficult part in computing
E(ω) is to compute âϕ(ω). However, for real-valued
symmetric box-spline filter M c

Ξ(x), aϕ(k) reduces to∫
Rn

M c
Ξ(k − x)M c

Ξ(x)dx = (M c
Ξ ∗M c

Ξ)(k) = M c
Ξ∪Ξ(k).

In other words, we only need to evaluate the values
of the box-spline M c

Ξ∪Ξ(x) on the lattice points GbccZ3,
which can be achieved by solving an eigenvalue problem
based on the refinement property of the box-spline [2].

4 SYMMETRIC QUARTIC BOX-SPLINE ON THE
BCC LATTICE

In this section, we define M7 on the BCC lattice, in-
vestigate its properties, and establish an efficient spline
evaluation algorithm.

4.1 Definition and Properties
The symmetric quartic box-spline M7 on the BCC lattice
Zbcc is the ‘centered’ and ‘scaled’ version of the box-spline
MΞ7

M7(x) := | detGbcc|MΞ7(x+
∑
ξ∈Ξ7

ξ

2
) = 4MΞ7

(
x+

[
1
1
1

])
defined by the direction matrix

Ξ7 :=
[
Ξ1 Ξ2

]
corresponding to the 8+ 6 = 14 lattice points in S1 ∪S2.
The support of M7 is the shape of a truncated rhombic
dodecahedron, obtained by cutting six corners of the
support of M8 (Figure 3(d) and Figure 4(b)). The volume
of the support is 120, since the cut-away volume is
23 = 8; therefore, the stencil size is 120/|detGbcc| = 30,
two less than that of M8. The degree of M7 is 7− 3 = 4,

x

y

z

(a) (0, 0, 0) or (1, 1, 1)
x

y

z

(b) (1, 0, 0) or (0, 1, 1)

x

y

z

(c) (0, 1, 0) or (1, 0, 1)
x

y

z

(d) (0, 0, 1) or (1, 1, 0)

Fig. 6. The four types of partitioned cubes delineating the
polynomial pieces of M7. The coordinate triples denote
the ‘lower corner’ of each cube (with modulo 2). Each
cube is decomposed into six tetrahedra aligned along its
respective diagonal, resulting in 24 shift-invariant tetrahe-
dral polynomial pieces.

and it has the approximation order four [17]. The shifts
of M7(x) on Zbcc are linearly dependent, therefore do not
form a Riesz basis since detΞ2 = 8, while detGbcc = 4
[17]. This would cause a problem when interpolating
the samples. However, interpolation usually results in
poorer reconstruction quality than quasi-interpolation
[1]. Two of the optimal quasi-interpolation prefilters are
shown in Table 1.

4.2 Evaluation

To evaluate a spline generated by M7, we need to exploit
the structure induced by the shifts of the knot planes of
M7 on Zbcc. First, note that Ξ7 induces nine knot planes
with normals{[

1
0
0

]
,
[
0
1
0

]
,
[
0
0
1

]
,
[
0
1
1

]
,
[

0
1

−1

]
,
[
1
0
1

]
,
[

1
0

−1

]
,
[
1
1
0

]
,
[

1
−1
0

]}
.

The shifts on Zbcc of the three axis-aligned knot planes
first decompose a spline into unit cubes, which can be
grouped in four types according to their lower corner
indices (Figure 6). Each cube is further decomposed into
six tetrahedra by other knot planes, as in Figure 6, result-
ing in 24 shift-invariant tetrahedral polynomial pieces.
Due to the symmetry of the structure, all 24 tetrahedra
are congruent. Hence, for evaluation, we can consider
only one reference tetrahedron, for which we picked that
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TABLE 1
Comparison of three box-splines on the BCC lattice having an approximation order of four. Note that

quasi-interpolants are z-transformed.

Box-spline M12 M8 M7

direction matrix
[
Ξ2 Ξ2 −Ξ2 −Ξ2

] [
Ξ1 Ξ1

] [
Ξ1 Ξ2

]
# of directions 12 8 7

(polynomial) degree 9 5 4

approximation order 4 4 4

support cube rhombic truncated rhombic
dodecahedron dodecahedron

# of shift-invariant pieces 1 6 24

volume of support 512 128 120

stencil size 128 32 30

Riesz basis? no yes no

optimal QI
12(z) :=

7

3
− 1

6

∑
ξ∈S1

z−ξ QI
7(z) = QI

8(z) :=
5

3
− 1

12

∑
ξ∈S1

z−ξ

quasi-interpolation

prefilter QII
12(z) :=

13

6
− 1

12

∑
ξ∈S1∪S2

z−ξ QII
7 (z) = QII

8 (z) :=
19

12
− 1

24

∑
ξ∈S1∪S2

z−ξ

with vertices {vj}4j=1 as follows (Figure 6(a)):

v1 :=
[
0
0
0

]
,v2 :=

[
1
1
1

]
,v3 :=

[
1
0
0

]
and v4 :=

[
1
1
0

]
.

Table 1 of the supplemental material shows the stencil
and BB-coefficients of the reference tetrahedron.

Algorithm 1 shows a pseudocode for evaluating the
spline ∑

j∈Zbcc

V (j)M7(x− j)

where V : Zbcc 7→ R is the volume dataset sampled on
the BCC lattice. To determine which of the 24 tetrahedra
the input x belongs, we first determine the cube type
(Figure 6) using the lower point (⌊x⌋ modulo 2) and
find the reflection matrix R that maps the cube to the
reference cube in Figure 6(a). Then we determine which
of the six tetrahedra in Figure 6(a) contains R(x− ⌊x⌋)
and determine the suitable permutation matrix P. Now
ẋ := PR(x−⌊x⌋) is located in the reference tetrahedron,
and we can collect the 30 data samples and construct
the polynomial formula. One method is to build a BB-

form and use the de Casteljau algorithm for evaluation.
Table 1 of the supplemental material shows the BB-
coefficients computed by following the procedure by
Kim and Peters [16]. While this method is stable and
fast in general, it shows poor performance in our case
due to the large number of multiplications. Therefore, we
derived the explicit formula following the procedure by
Entezari et al. [13]. Figure 1 of the supplemental material
shows the explicit symbolic polynomial formula after
some simplification.

5 RESULTS AND DISCUSSION
In this section, we compare three reconstuction schemes
with various quasi-interpolation prefilters. For rendering
of the reconstructed volume, the POV-Ray ray-tracing
package [20] is used. Note that POV-Ray uses the finite
difference method internally to compute normal vectors
for shading. In the following sections, the number of
samples is denoted as N3 × 2 in the sense that the BCC
lattice can be built by inserting additional points at the
center of Cartesian grid cell. In addition, QII

∗ denotes all
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Algorithm 1 Evaluation of
∑

j∈Zbcc

V (j)M7(x− j)

function EVALUATEQUARTIC(V , x)
Find the reflection matrix R that maps the cube

of type i□ := (⌊x⌋ modulo 2) (Figure 6) to that of
Figure 6(a).

Find the tetrahedron containing R(x − ⌊x⌋) by
testing against three knot planes in Figure 6(a).

Find the permutation matrix P that maps the tetra-
hedron to the reference tetrahedron.

ẋ← PR(x− ⌊x⌋)
for i = 1 to 30 do

j ← J7(i)
ci ← V (i□ + (PR)−1j)

end for
Evaluate using either the de Casteljau algorithm

with the BB-form from Table 1 or the formula in
Figure 1 of the supplemental material.
end function

three discrete quasi-interpolation prefilters QII
12, QII

8 , and
QII

7 (Table 1).

5.1 Evaluation Time

TABLE 2
Evaluation time (in seconds) of 107 points randomly

generated inside each volume. (System specifications:
Ubuntu 11.04/ quad-core Intel® Xeon® CPU X5550

@2.67GHz with L2 Cache 8MB/ 6GB main memory)

dataset M12 M8 (t8) M7 (t7) t7/t8 (%)

213 × 2 3.83445 2.09095 1.55458 74.3
273 × 2 4.24062 2.24015 1.69082 75.5
323 × 2 4.31606 2.29917 1.75987 76.5
373 × 2 4.43997 2.35084 1.79927 76.5
453 × 2 4.41845 2.35842 1.84051 78.0
573 × 2 4.58235 2.42169 1.88100 77.7
773 × 2 6.46921 3.24693 2.66483 82.1
933 × 2 7.26688 3.61189 2.98389 82.6
1173 × 2 7.82863 3.91083 3.18585 81.5

Table 2 compares the evaluation times of the three
box-spline filters. While splines of M12 can be evaluated
efficiently using the de Boor algorithm, it takes much
more time than the others due to the at least four times
greater number of fetch operations. Evaluating splines
of M7 is faster than those of M8 thanks to the concise
and partially factored spline form. Also, the smaller
stencil size induced by the smaller support contributes
to the performance gain. Note that, while M12 shows
the worst performance on the CPU, it shows the best
performance on the GPU due to its tensored structure
[14] since convolutions with eight data samples can be
done using one tri-linear texture fetch performed by the

hardware, reducing the number of fetch operations from
128 to 16 and inducing lower computational overhead.
Also note that, while the evaluation time is independent
of dataset size, the fetch operation overhead increases as
the dataset gets larger due to cache misses.

5.2 Reconstruction Quality

Fig. 7. Marschner-Lobb test function [18].

Figure 8 compares the reconstruction of the test func-
tion (Figure 7) using the three box-spline filters with
quasi-interpolation prefilters. Note that the Nyquist fre-
quency of the test function is just below 0.05−3, corre-
sponding to 413 samples on the Cartesian lattice, and
3/8 of each volume is clipped to clearly show the cross-
section.

When the sampling density is high, M12 shows the
best quality due to its low post-aliasing property. How-
ever, as the density decreases, M12 quickly loses a large
amount of detail due to its high smoothing aliasing prop-
erty, which can be seen more clearly in the cross-section
view. Comparing M8 and M7, while visually similar,
more ripples appear in the M8 reconstruction due to
the post-aliasing property. This aliasing is evident in the
close-up views in Figure 9. Intuitively, more convolution
directions in Ξ7 induce fewer preferred directions in
reconstruction, resulting in reduced aliasing.

Figure 10 shows reconstruction of the Carp dataset.
The reconstruction by M12 loses many details, but the
other two images are hardly distinguishable. The subtle
improvement by M7 will be verified in Section 5.5.

TABLE 3
Filter metrics of three filters. [18].

filter smoothing post-aliasing

M12 0.94495 0.00004
M8 0.85287 0.00399
M7 0.85488 0.00355

5.3 Integral Filter Metrics

Table 3 shows two filter metrics proposed by Marschner
and Lobb [18]. Given a filter ϕ, the smoothing metric is
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# samples\filter M12 M8 M7

393 × 2 (513)

313 × 2 (413)

273 × 2 (333)

233 × 2 (293)

193 × 2 (253)

Fig. 8. Reconstruction of the ML (Marschner-Lobb) dataset [18] sampled on the BCC lattice with quasi-interpolation
prefilters QII

∗. Numbers in parantheses denote the corresponding number of samples on the Cartesian lattice
with the same density. For any density, reconstruction with M12 shows the greatest smoothing aliasing. Although
reconstructions by M8 and M7 look similar, M7 induces less ripples (Figure 9).

defined as

S(ϕ) := 1− 1

|Nn|

∫
Nn

|ϕ̂|2dV,

and the post-aliasing metric is defined as

P (ϕ) :=
1

|Nn|

∫
Nn

|ϕ̂|2dV,

where Nn is the Nyquist region, and Nn is its com-
plement. All the metrics are computed by Matlab’s
triplequad function. Comparing M8 and M7, while
M7 shows higher smoothing and lower post-aliasing,
the differences are small, but the improvement of the
post-aliasing of M7 is greater than that of smoothing of

M8. On the other hand, M12 shows much lower post-
aliasing and stronger smoothing properties, as verified
in Section 5.2.

5.4 Spectrum Analysis

While the filter metrics are useful to show the aliasing
characteristics of filters, they only convey the integral
measure and are therefore not suitable to analyze the
distributional aliasing characteristics. For this purpose,
we evaluated and visualized the spectra of filters on
the planes and lines with various orientations. Figure 11
shows the spectra of the three filters evaluated on the
planes with various orientations. In any case, |M̂12|
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(a) 393 × 2 (b) 313 × 2

(c) 273 × 2 (d) 233 × 2

Fig. 9. Close-up views of the first four rims of the ML dataset reconstructed by (left) M8 and (right) M7. In each case,
reconstruction by M8 shows more ripples on the surface due to its stronger post-aliasing. Note that the surfaces look
dull since shadowless lights are used for rendering.

shows very small distribution outside the Nyquist re-
gion, which explains the low post-aliasing of M12. Also,
the distribution of M12 inside the Nyquist region is much
lower than others, corresponding to high smoothing
aliasing. Comparing |M̂8| and |M̂7|, their overall shapes
are very similar. However, |M̂8| has a more concentrated
distribution outside the Nyquist region, which is no-
ticeable in Figure 11(d). Summing up, we can see that,
while the smoothing and post-aliasing of M8 and M7 are
similar in integral measure, the post-aliasing artifacts of
M8 are more concentrated along specific directions and
thus induce more visual aliasing artifacts.

To see the directional aliasing characteristics in more
detail, we plotted the spectra of the filters along three
directions in Figure 12. As can be seen, M12 shows the
strongest smoothing aliasing along all directions. While
M12 shows almost no post-aliasing along the directions
(1, 1, 0) and (1, 1, 1) (Figure 12(d) and 12(f)), its post-
aliasing along (1, 0, 0) is noticeable since the data are
closer to the centers of the replica (Figure 12(b)). Along
the direction (1, 0, 0), M7 shows higher smoothing but
lower post-aliasing than M8 (Figure 12(b)). They exactly
match each other along (1, 1, 0) (Figure 12(d)). Along
the direction (1, 1, 1), M8 shows noticeably higher post-
aliasing than M7, but it is still relatively far away from
the centers of its closest replica (Figure 12(f)).

5.5 Frequency Error Kernels

While integral filter metrics and distributional analysis
of the spectra are helpful to compare filter performance,
they do not provide a quantitative error measure of
the reconstructed signal accompanied with various pre-
filters. To this end, we computed the frequency error
kernels proposed by Blu and Unser [1].

Figure 13 shows the frequency error kernels of various
configurations in the low frequency band. While the
error kernels are tri-variate, we only need to consider
the case ω = (ω, ω, ω) since only uniform scaling is
acceptable to keep the lattice equivalent. As can be
seen, Emin of M12 is the lowest followed by those of
M8 and M7. When applied to reconstruction with or
without quasi-interpolation prefilters, M12 shows the
worst approximation behavior. Comparing M7 and M8,
while the difference is small, M7 always outperforms M8.

6 CONCLUSION AND FUTURE WORK

We present an alternative symmetric box-spline recon-
struction filter on the BCC lattice which has better ap-
proximation power than previous methods while also
having lower complexity. Moreover, due to the sim-
plified explicit polynomial formula, the computational
cost of our method is lower than those of the previous
methods. To show the improved reconstruction quality,
we computed and analyzed integral filter metrics and
frequency error kernels. In addition, each spectrum is
evaluated on the planes and lines with various orienta-
tions in order to visualize and analyze the distributional
aliasing characteristics of the filters in more detail.

We are currently working on implementing a real-time
ray-casting module on the GPU to leverage an efficient
evaluation. As our future work, we plan to analyze
the gradient error of the reconstructed volume and to
investigate improved quasi-interpolation prefilters.
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Fig. 10. Reconstruction of Carp dataset [23] with (top) M12, (middle) M8 and (bottom) M7 and prefilters QII
∗. Only

≈ 3% of the original dataset is used.
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overall spectrum cropped within [0, 0.011]

(a) (b)

(c) (d)

(e) (f)

Fig. 11. Spectra of the three filters (left) |M̂12|, (middle) |M̂8|, and (right) |M̂7| evaluated on the three planes with
normals (top) (1, 0, 0) (middle) (1, 1, 0) (bottom) (1, 1, 1). The white polygons denote the boundaries of the Voronoi
region of the dual lattice, and the white dots denote the dual lattice points.

helped to improve this article. This work was supported
by the University of Seoul 2009 Research Fund.

REFERENCES
[1] T. Blu and M. Unser. Quantitative Fourier analysis of approx-

imation techniques: Part I – interpolators and projectors. IEEE
Transactions on Signal Processing, 47(10):2783 – 2795, Oct. 1999.

[2] A. Cavaretta, C. Micchelli, and W. Dahmen. Stationary Subdivision.
American Mathematical Society, Boston, MA, USA, 1991.

[3] L. Condat and D. Van De Ville. Three-directional box-splines:
characterization and efficient evaluation. IEEE Signal Processing
Letters, 13(7):417–420, July 2006.

[4] J. H. Conway and N. J. A. Sloane. Sphere Packings, Lattices and
Groups. Springer-Verlag New York, Inc., New York, NY, USA, 3rd
edition, 1998.
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for reconstruction on the body centered cubic lattice. IEEE
Transactions on Visualization and Computer Graphics, 14(2):313–328,
Mar. 2008.

[14] B. Finkbeiner, A. Entezari, D. Van De Ville, and T. Möller. Efficient
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(b)

(c)
(0, 0, 0) (π, π, 0)(−π,−π, 0)

(d)

(e)
(0, 0, 0)

(f)

Fig. 12. Three spectra (red) |M̂7|, (blue) |M̂8|, and (green) |M̂12| evaluated along the directions (a) (b) (1, 0, 0), (c) (d)
(1, 1, 0), and (e) (f) (1, 1, 1). Figures on the righthand side are magnified 100 times vertically. Shaded areas denote the
Nyquist regions along corresponding directions.

1

1
ω

E(ω)

Fig. 13. Error kernels of (red) M7, (blue) M8 and (green) M12 with (dotted) no prefiltering, (dashed) QI
∗, and (solid)

QII
∗. Dark red/blue/green curves denote the optimal error kernels Emin(ω) of the corresponding filters. The black curve

denotes the error kernel of M12 with the quasi-interpolation prefilter computed by Csébfalvi [5].
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