
GPU Isosurface Raycasting of FCC Datasets

Minho Kima

aSchool of Computer Science, University of Seoul, Republic of Korea

Abstract

This paper presents an efficient and accurate isosurface rendering algorithm for the natural C1 splines on the face-
centered cubic (FCC) lattice. Leveraging fast and accurate evaluation of a spline field and its gradient, accompanied
by efficient empty-space skipping, the approach generates high-quality isosurfaces of FCC datasets at interactive speed
(20–70 fps). The pre-processing computation (quasi-interpolation and min/max cell construction) is improved 20 to
30-fold by OpenCL kernels. In addition, a novel indexing scheme is proposed that allows an FCC dataset to be stored
as a four-channel 3D texture. When compared with other reconstruction schemes on the Cartesian and BCC (body-
centered cubic) lattices, this method can be considered a practical reconstruction scheme that offers both quality and
performance. The OpenCL and GLSL (OpenGL Shading Language) source codes are provided as a reference.

Keywords: Volume rendering, Raycasting, FCC lattice, GPU, Box-spline

1. Introduction

While it has been known for a while that the BCC and
FCC lattices are more efficient sampling lattices than the
classical Cartesian lattice, they have not been widely used
in practice due to the computational overhead and lack of
proper reconstruction filters tailored for them. Some re-
searchers recently investigated spline-based reconstruction
schemes on those lattices and demonstrated their superior
power [6, 2, 5, 14, 13]. To further utilize the FCC lattice,
this paper introduces a real-time GPU (graphics process-
ing unit) isosurface raycaster. The contributions are

• fast pre-processing using OpenCL computing ker-
nels,

• fast, accurate and stable evaluation of a spline field
and its gradient,

• efficient empty space skipping, and

• a novel indexing scheme that allows an FCC dataset
to be stored compactly as a four-channel (RGBA)
3D texture.

2. Previous Work

Since programmable GPUs were first introduced, GPU
raycasting has been actively investigated, but mostly lim-
ited to datasets on the Cartesian lattice. See Engel et al.
[4] for a complete list of volume rendering techniques. For
non-Cartesian lattices, no GPU raycaster has been inves-
tigated for FCC datasets, but a couple have been inves-
tigated for BCC datasets. Csébfalvi and Hadwiger [2]

Email address: minhokim@uos.ac.kr (Minho Kim)

implemented a GPU raycaster for the tri-cubic B-spline
filter. Thanks to the hardware-accelerated tri-linear in-
terpolation, their method is very fast, but the resulting
volume is over-smoothed. They stored a BCC dataset in
two separate 3D textures on the GPU. While this strat-
egy is suitable for their specific filter, it introduces over-
head for other reconstruction filters. Based on the effi-
cient evaluation method developed by Entezari et al. [7],
Finkbeiner et al. [8] implemented a GPU raycaster for the
eight-direction box-spline filter [6]. They packed the BCC
dataset as a one-channel 3D texture by shifting every sec-
ond layer along the z direction by (1, 1, 0). Such a conver-
sion works well in most cases, but it is not symmetric and
therefore less cache-friendly along the z-axis.

Künsch et al. [15] showed that the FCC lattice is op-
timal for a dataset sampled at a low rate. Ibáñez et al.
[11] investigated a ray-tracer for FCC datasets. Petkov
et al. [17] showed the superiority of the lattice-Bolzmann
method on the FCC lattice compared to the Cartesian lat-
tice. Leveraging the isotropic structure of the FCC lattice,
Qiu et al. [18] proposed an efficient global illumination
method on the FCC lattice by discretizing photon trac-
ing. The six-direction box-spline filter on the FCC lattice
was first proposed by Entezari [5] and later investigated in
detail by Kim et al. [14].

Hadwiger et al. [9] proposed an efficient empty space
skipping method for a GPU raycaster, where tight entry
and exit ray positions are computed by selectively render-
ing quad faces of blocks enclosing voxels based on their
min/max values.

Preprint submitted to Graphical Models October 19, 2012

3. Background

In this section we first describe the FCC lattice and
box-splines. For the complete theory of box-splines, refer
to the book by de Boor et al. [3]. Then we review the
six-direction box-spline Mfcc and its properties.

Hereafter vectors are typeset as bold lower case letters,
e.g., x, matrices are typeset as bold upper case letters, e.g.,
M , and the j-th component of a vector x is denoted as
x(j),

3.1. The FCC Lattice

A three-dimensional lattice L is defined by all of the in-
teger linear combinations of a non-singular generator ma-
trix G:

L := {Gj : j ∈ Z3,G ∈ R3×3, detG ̸= 0}.

The FCC lattice Zfcc is defined as a subset of the Carte-
sian lattice Z3 where the sum of its components is even,
i.e.,

Zfcc := {j ∈ Z3 : j(1) + j(2) + j(3) is even.},

or by the generator matrix

Gfcc :=

 0 1 1
1 0 1
1 1 0

 .

Due to the frequent use of the three column vectors of
Gfcc, we denote them as ξ011, ξ101, and ξ110, respectively.
Note that the FCC lattice can be decomposed into four
Cartesian lattices scaled by 2:

Zfcc = (2Z3) ∪ (2Z3 + ξ110) ∪ (2Z3 + ξ101) ∪ (2Z3 + ξ011).

Also note that Z3\Zfcc is another FCC lattice. The FCC
lattice shows better sampling efficiency than the Carte-
sian lattice [1]. While the BCC lattice is the optimal 3D
sampling lattice for band-limited and isotropic signals, the
FCC lattice is optimal when the signal is sampled at a low
rate, as indicated by Künsch et al. [15].

3.2. Box-Splines

In the subsequent text, a matrix also denotes a set
of column vectors allowing multiplicity, depending on the
context.

A box-spline is a piecewise polynomial with a finite
support and certain continuity and is uniquely defined by
a direction matrix. Given an n × m (usually n ≤ m) di-
rection matrix Ξ, a box-spline MΞ can be constructed by
taking consecutive directional convolutions along each col-
umn direction (Figure 1). In other words, starting from
the base case (n = m)

MΞ(x) :=
1

| detΞ|
χΞ(x), x ∈ Rn

where Ξ is invertible and χΞ(x) is the characteristic func-
tion on the half-open parallelepiped Ξ[0, 1)m. A box-spline
defined by the direction matrix Ξ∪{ξ} can be recursively
defined as

MΞ∪{ξ}(x) :=

∫ 1

0

MΞ(x− tξ)dt, ξ ∈ Rn.

x

y

(a)

x

y

(b)

x

y

(c)

Figure 1: Construction of box-splines with direction matrices (a)[
1 0
0 1

]
, (b)

[
1 0 1
0 1 1

]
and (c)

[
1 0 1 −1
0 1 1 1

]
via consecutive directional con-

volutions.

Given a discrete dataset on the Cartesian lattice, we
can reconstruct a continuous spline s(x) by a convolution
of the dataset V : Zn 7→ R and a box-spline filter MΞ:

s(x) := V ∗MΞ :=
∑
j∈Zn

V (j)MΞ(x− j).

But in most cases we can obtain better reconstruction by
applying a discrete quasi-interpolation prefilter q on the
dataset beforehand:

(V ⋆ q) ∗MΞ,

where ⋆ denotes the discrete convolution

(V ⋆ q)(k) :=
∑
j∈Zn

V (j)q(k − j).

Then the reconstructed spline annihilates all the lower
terms of the Taylor expansion of the input signal reducing
approximation error. Refer to de Boor et al. [3] for the pro-
cedure to compute discrete quasi-interpolation prefilters.

While the theory put forth by de Boor et al. [3] is
based on shifts on the Cartesian lattice, box-splines on
non-Cartesian lattices can be easily obtained by change-
of-variables [13].

3.3. Six-Direction Box-Spline on the FCC Lattice

The six-direction box-spline on the FCC lattice Mfcc is
the ‘centered’ and ’scaled’ version of the box-spline defined
by the direction matrix Ξfcc (Figure 2(a)) [14]:

Mfcc(x) := | detGfcc|MΞfcc
(x+ ξc),

where | detGfcc| = 2,

Ξfcc :=

 1 −1 1 1 0 0
1 1 0 0 1 −1
0 0 1 −1 1 1

 ,

2

and

ξc :=
1

2

∑
ξ∈Ξfcc

ξ =

 1
1
1

 .

Its (total) polynomial degree is 6 − 3 = 3 and the ap-
proximation order is 2. The tensor-product counterpart
with the same approximation order is the tri-quadratic B-
spline with polynomial degree 9 − 3 = 6. Its support has
the shape of a truncated octahedron (Figure 2(b)).

36

−1

−1

−1

−1
−1

−1

−1

−1

−1

−1

−1

−1

(a) (b) (c)

Figure 2: The (a) directions, (b) support, and (c) quasi-interpolation
prefilter (scaled by 24) of Mfcc.

Given a discrete volume dataset V sampled on the FCC
lattice, a continuous spline s(x) can be constructed by a
convolution with Mfcc on the FCC lattice. One of the
discrete quasi-interpolation prefilters of Mfcc that provide
the optimal approximation order 2 is given by Kim et al.
[14] (Figure 2(c)).

qfcc(j) :=


36/24 j = 0

−1/24 j ∈ {±ξ : ξ ∈ Ξfcc}
0 otherwise.

4. GPU Raycasting of FCC Datasets

In this section, an efficient evaluation algorithm for the
spline and its gradient on the FCC lattice is outlined, fol-
lowed by an efficient empty space skipping method and a
novel indexing scheme for FCC datasets.

4.1. Evaluation of Splines on the GPU

For evaluation of a spline, it is important to know the
polynomial structure induced by the knot planes of Mfcc,
since all the points in the same polynomial piece share the
stencil, which is the relative location of finite data on Zfcc

required for evaluation. Kim et al. [14] already analyzed
the spline structure, but here we do it in a slightly different
way since we need to evaluate its gradient too.

There are seven knot planes generated by Mfcc, three
of which are axis-aligned and decompose the whole space
into cubes; {j + [0, 1)3 : j ∈ Z3}. Depending on the lower
corner j of each cube, we can split the cubes into two
groups:

{j + [0, 1)3 : j ∈ Zfcc} and {j + [0, 1)3 : j ∈ (Z3\Zfcc)}.

Note that each group can be identified by computing the
parity of j; j(1)+j(2)+j(3). Then by the remaining four
knot planes, cubes in each group are decomposed into five
tetrahedra {τ0, τ1, τ2, τ3, τ4} and {τ5, τ6, τ7, τ8, τ9} in Fig-
ure 3. Note that each tetrahedron τj in the second group
(Figure 3(f)−−(j)) can be transformed to τj−5 with a re-
flection with respect to the origin followed by a translation
by (1, 1, 1):

τj−5 =

 −1 0 0
0 −1 0
0 0 −1

 τj+

11
1

 for j ∈ {5, 6, 7, 8, 9}.

(a) τ0 (b) τ1 (c) τ2 (d) τ3 (e) τ4

(f) τ5 (g) τ6 (h) τ7 (i) τ8 (j) τ9

Figure 3: Shift-invariant tetrahedral polynomial pieces induced by
Mfcc for (top) even and (bottom) odd parity cubes.

While a spline is defined as a convolution of an infinite
number of data on Zfcc and the filter Mfcc, due to the finite
support of Mfcc, we only need (at most) 16 data values on
Zfcc. Let Jj be the stencil of τj . Then, if x ∈ τj ,

s(x) =
∑
k∈Jj

V (⌊x⌋+ k)Mfcc(x− ⌊x⌋ − k).

In general, we need to consider each shift-invariant poly-
nomial piece separately in order to evaluate a spline as
described above. But thanks to the symmetry of Mfcc, we
need to consider only two types of tetrahedra, τ0 and τ4,
for evaluation [14]. All of the other types can be trans-
formed to one of the two by an orthogonal transformation
composed of reflections and a translation (Figure 4). Let

ι(j) :=

{
0 j ∈ {0, 1, 2, 3, 5, 6, 7, 8}
4 j ∈ {4, 9}

and let T j be the orthogonal transformation such that

T j(τj) = τι(j),

i.e., the whole tetrahedron τj is mapped to τι(j) by T j .
For example,

T 3(x) :=

 1 0 0
0 −1 0
0 0 −1

x−

01
1



3

and

T 9(x) :=

 −1 0 0
0 −1 0
0 0 −1

x+

11
1

 .

Then it is straightforward that

{T j(k) : k ∈ Jj} = {i : i ∈ Jι(j)}.

Therefore we get

s(x) =
∑

k∈Jι(j)

V (⌊x⌋+ k)Mfcc(x− ⌊x⌋ − T−1j (k)),

and we only need to consider evaluating polynomial pieces
τ0 and τ4. Figure 4 shows the GLSL code piece that fetches
FCC data samples for evaluation. For an input point, we
first transform the cube such that we only need to con-
sider the even parity case, and we test the local point
against four knot planes to determine the tetrahedral type
τj . Then we fetch FCC samples using transformed stencil
vectors. Note that we fetch #(J0∪J4) = 19 data samples
to avoid conditional branching for evaluation.

ivec3 T[10] = ivec3 [10](
ivec3 (0,0,0),ivec3 (1,1,0),ivec3 (1,0,1),
ivec3 (0,1,1),ivec3 (0,0,0),ivec3 (1,1,1),
ivec3 (0,0,1),ivec3 (0,1,0),ivec3 (1,0,0),
ivec3 (1,1,1));

ivec3 R[10] = ivec3 [10](
ivec3(1, 1, 1),ivec3(-1,-1, 1),ivec3(-1, 1,-1),
ivec3(1,-1,-1),ivec3(1, 1, 1),ivec3(-1,-1,-1),
ivec3(1, 1,-1),ivec3(1,-1, 1),ivec3(-1, 1, 1),
ivec3(-1,-1,-1));

ivec3 stencil [19] = ivec3 [19](
ivec3(0, 0, 0),ivec3(2, 0, 0),ivec3(0, 2, 0),
ivec3(0, 0, 2),ivec3(2, 1, 1),ivec3(0, 1, 1),
ivec3(0, 1,-1),ivec3(0,-1,-1),ivec3(0,-1, 1),
ivec3(1, 2, 1),ivec3(1, 0, 1),ivec3(-1, 0, 1),
ivec3(-1, 0,-1),ivec3(1, 0,-1),ivec3(1, 1, 2),
ivec3(1, 1, 0),ivec3(-1, 1, 0),ivec3(-1,-1, 0),
ivec3(1,-1, 0));

vec3 p_local;
ivec3 origin;
origin = ivec3(floor(p_in));
p_cube = p_in -vec3(origin);
parity = (origin.x+origin.y+origin.z)&1;
p_local = p_cube;
if(parity ==1) p_cube = ivec3 (1,1,1) - p_cube;
if(dot(p_cube ,vec3(-1,-1,-1)) >-1) itet = 0;
else if(dot(p_cube ,vec3(1,1,-1)) >1) itet = 1;
else if(dot(p_cube ,vec3(1,-1,1)) >1) itet = 2;
else if(dot(p_cube ,vec3(-1,1,1)) >1) itet = 3;
else itet = 4;
if(itet ==4) type =1;
else type =0;
vitet = vec4(itet==0,itet==1,itet==2,itet ==3);
if(parity ==1) itet +=5;
p_local = p_local*R[itet] + T[itet];
origin += T[itet];
ivec3 fcc;
for(int i=0 ; i<19 ; i++)
{

fcc = origin + R[itet]* stencil[i];
FETCH(i)

}

Figure 4: GLSL code for fetching 19 FCC data samples for evalu-
ation. Note that the variable vitet is used in other parts of the
code.

While the code in Figure 4 is easy to understand and
correctly fetches 19 samples, its performance is extremely
slow for several reasons. First, it contains too many condi-
tional branches, which severely degrades the performance
on the GPU. Secondly, using look-up tables is also very
inefficient. Thus, we have to remove this overhead as
much as possible to obtain real-time performance. Fig-
ure 5 shows the improved version where all of the condi-
tional branches and look-up tables are removed. Moreover,
the stencils are ordered carefully such that the coordinate
change between adjacent stencils is minimized. Our exper-
iment shows that replacing the code in Figure 4 with that
in Figure 5 improves the performance by 10 to 16-fold.

vec3 p_local ;
i v e c3 R ;
i v e c3 f ;
f = ivec3 (f l o o r (p_in)) ;
p_cube = p_in−vec3 (f) ;
parity = (f . x+f . y+f . z)&1;
p_local = p_cube ;
p_cube += f l o a t (parity) ∗(1−2∗ p_cube) ;
vitet = vec4 (dot (p_cube , vec3 (−1,−1,−1))>−1,

dot (p_cube , vec3 (1 , 1 ,−1))> 1 ,
dot (p_cube , vec3 (1 ,−1 , 1))> 1 ,
dot (p_cube , vec3 (−1 , 1 , 1))> 1) ;

type = 1−(vitet . x+vitet . y+vitet . z+vitet . w) ;
itet = in t (dot (vitet . yzw , vec3 (1 , 2 , 3)))

+ 4∗ i n t (type) + parity ∗5 ;
i v ec3 offset = in t (vitet . y+vitet . z+vitet . w)

∗(1− i v e c3 (vitet . wzy)) ;
offset += parity ∗(1 − 2∗ offset) ;
R = 1−2∗offset ;
p_local = vec3 (offset) + vec3 (R) ∗ p_local ;
f += offset ;
R ∗= 2 ;

FETCH (0)
f . x+=R . x ; FETCH (1)
f . x−=R . x ; f . y+=R . y ; FETCH (2)
f . y−=R . y ; f . z+=R . z ; FETCH (3)
f . x+=R . x ; f . y+=R . y>>1; f . z−=R . z>>1; FETCH (4)
f . x−=R . x ; FETCH (5)
f . z−=R . z ; FETCH (6)
f . y−=R . y ; FETCH (7)
f . z+=R . z ; FETCH (8)
f . x+=R . x>>1; f . y+=(3∗R . y)>>1; FETCH (9)
f . y−=R . y ; FETCH (10)
f . x−=R . x ; FETCH (11)
f . z−=R . z ; FETCH (12)
f . x+=R . x ; FETCH (13)
f . y+=R . y>>1; f . z+=(3∗R . z)>>1; FETCH (14)
f . z−=R . z ; FETCH (15)
f . x−=R . x ; FETCH (16)
f . y−=R . y ; FETCH (17)
f . x+=R . x ; FETCH (18)

Figure 5: Improved GLSL code for determining the tetrahedral poly-
nomial structure and fetching FCC data.

After collecting all the 16 data samples, we can con-
struct a BB-form of the polynomial piece based on Table
1 in Kim et al. [14] and evaluate it using the de Casteljau
algorithm.

4.2. Analytic Gradient Computation

For isosurface rendering, accurate normal vectors need
to be calculated on the surface for correct shading. In
most raycasting kernels, a finite difference method based
on six neighbor values is used to approximate the gradient.

4

While this method is effective in most cases, it induces a
large overhead if the evaluation is expensive, as in this
case.

For a box-spline defined by Ξ, a directional derivative
along ξ ∈ Ξ, DξMΞ, can be represented as a backward
difference of the box-spline defined by Ξ\{ξ} [3]:

DξMΞ = ∇ξMΞ\{ξ},

where ∇ξ is the backward difference operator along ξ.
Therefore, a directional derivative along ξ ∈ Ξfcc of a
spline s can be expressed as another spline as follows:

Dξ (V ∗Mfcc) = V ∗ (DξMfcc) = V ∗
(
∇ξ2MΞfcc\{ξ}(·+ ξc)

)
= V ∗Mξ,

where

Mξ(x) := ∇ξ2MΞfcc\{ξ}(x+ ξc)

= 2MΞfcc\{ξ}(x+ ξc)− 2MΞfcc\{ξ}(x+ ξc − ξ).

Since Ξfcc includes no axis-aligned directions, we compute
the three directional derivatives along ξ110, ξ101, and ξ011
then obtain the gradient as follows:

∇ (V ∗Mfcc) =
1

2

d110 + d101 − d011
d110 + d011 − d101
d101 + d011 − d110

 ,

where dξ := V ∗Mξ. Since each derivative kernel Mξ is the
sum of two box-splines, each can be computed in a simi-
lar way as Mfcc using the de Casteljau algorithm. Those
derivative kernels are quadratic and can therefore be eval-
uated quickly. Moreover, thanks to permutational symme-
tries among them (Figure 6), we need the BB-coefficients
for M110 only. But to evaluate M110, due to its lower
symmetry compared to that of Mfcc, we need to consider
three types of polynomial pieces: τ0, τ2 and τ4. Table 1
shows the stencils and BB-coefficients of M110 for each
type, computed using the method developed by Kim and
Peters [12].

(a) (b) (c)

Figure 6: Supports of (a) Mξ110
, (b) Mξ101

, and (c) Mξ011
.

Notice that, from Figure 6(a), we can see that the sup-
port of M110, and hence its stencil, is a subset of that of
Mfcc. Therefore, we do not need additional texture fetches
to evaluate the gradient, but can re-use those samples
that were already fetched for spline evaluation, resulting

in a better performance than the finite difference method,
which requires six additional spline evaluations (Table 3).

Table 1: The stencil (leftmost column) and BB-coefficients of M110

for (top) τ0, (middle) τ2 and (bottom) τ4.

2 1 0 1 0 0 1 0 0 0
0 1 2 0 1 0 0 1 0 0
0 0 0 1 1 2 0 0 1 0
0 0 0 0 0 0 1 1 1 2

(0, 0, 0) −4 −4 −4 −8 −4 −4 −4
(0, 1, 1) 1 2 2 4 4
(1, 0, 1) 1 2 2 4 4
(1, 1, 0) 2 4 4 4 8 4 2 4 4
(0, 1,-1) 1 2
(1, 0,-1) 1 2
(2, 0, 0) 4
(0, 2, 0) 4
(-1,-1, 0)−2 −2
(-1, 0, 1)−1 −2 −2 −4 −4
(0,-1, 1)−1 −2 −2 −4 −4
(-1, 0,-1)−1 −2
(0,-1,-1)−1 −2
(1,-1, 0) −4
(-1, 1, 0) −4

(0, 1, 1) 4 −4
(1, 0, 1) 4 4 4 −4 −4 −4
(1, 1, 0) 1 2 4 2 4 2 4 4
(2, 0, 0) 1 2 4
(2, 1, 1) 2 2 4 4 4
(1, 2, 1) 4
(1, 1, 2) 1 2 2 4
(2, 0, 2) 1
(-1, 0, 1) −4
(0,-1, 1)−2 −2 −4 −4 −4
(0, 0, 0)−1 −2 −4 −2 −4 −2 −4 −4
(1,-1, 0)−1 −2 −4
(0, 0, 2)−1 −2 −2 −4
(1,-1, 2)−1

(0, 1, 1)−4 −4 4 4
(1, 0, 1)−4 −4 4 4
(1, 1, 0) 4 4 4 8 4 4 4 4
(1, 1, 2) 4
(1, 2, 1) 4 4
(2, 1, 1) 4 4
(0, 2, 0) 4
(2, 0, 0) 4
(-1, 0, 1) −4 −4
(0,-1, 1) −4 −4
(0, 0, 0) −4 −4 −4 −8 −4 −4 −4 −4
(0, 0, 2) −4
(-1, 1, 0) −4
(1,-1, 0) −4

4.3. Empty Space Skipping

While the spline should be evaluated along the whole
ray for direct volume rendering, we only need to find the
nearest isosurface point along the ray for isosurface render-
ing. Since spline evaluation is an expensive operation, we
can reduce the large overhead by employing an efficient
empty space skipping algorithm based on the min/max
values of each voxel [9]. This can be achieved efficiently
by taking the min/max BB-coefficients in each cube con-
taining five tetrahedral polynomial pieces.

Specifically, during the pre-processing stage for each
cubic cell {j + [0, 1)3 : j ∈ Z3} we construct the BB-
forms of its five tetrahedral polynomial pieces. The min/-

5

max values of those coefficients are set as the min/max
value of the cubic cell. Since this process requires a large
overhead but can be easily parallelizable, we implemented
a GPU OpenCL kernel that builds the BB-forms of leaf
cells. Table 4 shows the performance gain as a result of
this approach. The whole min/max octree can then be
constructed from the min/max values of the cubic cells.
During the rendering stage, in order to compute the entry
and exit points for isosurface rendering, instead of ren-
dering one cube enclosing the whole volume, we render
the cubes corresponding to one level of the min/max oc-
tree. All the vertices of a cube have the same 2D tex-
ture coordinates containing the min/max values. To com-
pute the exit positions, we first render the cubes with
glCullFace(GL FRONT) and glDepthFunc(GL LESS). Next
we render the cubes again with glCullFace(GL BACK) and
glDepthFunc(GL GREATER) to compute the entry positions.
In both cases, a fragment shader is loaded, which discards
the fragment if the cube is empty or it does not contain
the isosurface level (Figure 9).

4.4. Indexing Scheme for FCC Datasets

The volume dataset needs to be stored in the mem-
ory of the graphics hardware, usually as a 3D texture.
But currently there is no specific hardware that supports
non-Cartesian volume datasets. The simplest way to cir-
cumvent this is to store an FCC dataset as embedded in
a one-channel 3D texture. In this way, indexing induces
no overhead, hence the performance is good, but it results
in twice the memory footprint. Shifting each layer on the
xy-plane in a similar way as Finkbeiner et al. [8] is not a
good idea since each layer of Zfcc is a 2D Cartesian lattice
rotated by π/4. Loading in four separate textures is not a
good idea either, due to the large overhead for data fetch-
ing. We propose an efficient way to store an FCC dataset
as a four-channel (RGBA) 3D texture.

By grouping the FCC lattice points as

Zfcc = {j, j + ξ110, j + ξ101, j + ξ011 : j ∈ 2Z},

we can convert an FCC dataset, embedded in the Carte-
sian lattice of size Nx×Ny×Nz, into a four-channel Carte-
sian dataset of size

⌊(Nx + 1)/2⌋ × ⌊(Ny + 1)/2⌋ × ⌊(Nz + 1)/2⌋ × 4.

For an FCC index j ∈ Zfcc, let

pj := (j(1) mod 2, j(2) mod 2, j(3) mod 2)

be the parity vector of j. Since j ∈ Zfcc, j(1)+j(2)+j(3)
is always even, therefore

pj ∈ {0, ξ110, ξ101, ξ011}

and
2pj(1) + pj(2) ∈ {0, 1, 2, 3}.

Thus, we can convert the FCC index j as follows in order
to access the four-channel 3D texture:

j 7→ (⌊j(1)/2⌋, ⌊j(2)/2⌋, ⌊j(3)/2⌋, 2pj(1) + pj(2)).

Note that the above mapping can be achieved very ef-
ficiently using bitwise operations that are supported for
GLSL version 1.30 and later, as shown below.

texelFetch(texid ,j.x>>1,j.y>>1,j.z>>1)[((j.x&1) <<1)|(j←↩
.y&1)]

Note that a BCC dataset can also be converted to a
two-channel 3D texture in a similar manner and accessed
as shown below.

texelFetch(texid ,j.x>>1,j.y>>1,j.z>>1)[x&1]

5. Results and Discussion

Since there is no FCC dataset obtained directly from
real subjects, we discard half of the original Cartesian
dataset provided by the “vollib library” [19] to obtain
FCC datasets for the raycasting module. The dataset in
Table 7 are obtained by resampling the original dataset
interpolated by tricubic B-spline using the MATLAB [16]
interp3 function. Table 2 shows the four datasets used for
the experiments. All of the rendering performance mea-
surements were obtained for the images in Figure 7.

Table 2: Test datasets [19].

dataset size cell size (10−3) stepsize

MRI-Head 128×128×128×4 3.91× 3.91× 3.13 0.003125
VisMale 64×128×128×4 6.16× 3.89× 3.94 0.003890
CT-Head 128×128× 57×4 3.71× 3.91× 7.37 0.003711
Carp 128×128×256×4 1.53× 0.76× 1.95 0.000763

5.1. Image Quality

For raycasting isosurface rendering, the performance
and image quality heavily depend on both the stepsize of
the marching ray and the window size. For the test, we
adopted a stepsize equal to the width of the cubic cell of
the dataset and the window size was set to 500×500. Fig-
ure 7 shows the resulting images from four FCC datasets.
Thanks to the analytic gradient computation, we can ob-
tain isosurface images of superior quality (§5.2). But, since
the stepsize is fixed, the image qualities tend to decrease
when zoomed-in. This can be overcome by using an adap-
tive stepsize depending on the viewing angle and the dis-
tance from the camera.

6

5.2. Analytic Normal Computation

Figure 8 shows the rendering results where normal vec-
tors are computed using the analytic formula and the finite
difference method. When computed using the finite differ-
ence method, the normals are not accurate if we use offset
(δ) values that are too small due to the rounding-off error
(Figure 8(b)). Offset values that are too large also re-
sult in inaccurate normal values (Figure 8(d)) due to poor
approximation. When a proper offset value is used (Fig-
ure 8(c)), it results in accurate normal values. But the
analytic formula always results in accurate normal values.
Moreover, as can be seen in Table 3, the computation over-
head of the analytic formula is lower since the data fetch
overhead is lower.

Table 3: Performance (in fps: frames per second) comparison of two
normal computation methods.

dataset analytic finite difference speed-up

MRI-Head 65.2 51.7 1.3
VisMale 68.9 55.1 1.3
CT-Head 54.6 45.1 1.2
Carp 22.3 22.2 1.0

5.3. GPU Pre-processing

Table 4 shows the performance improvement of two
pre-processing stages, quasi-interpolation prefiltering and
min/max cell construction, using OpenCL kernels. For
quasi-interpolation, which is relatively light-weight, the
performance improvement is up to ≈ 19-fold. For min/-
max cell construction, the performance gain is up to ≈ 26-
fold. In any case, the gain is roughly proportional to the
size of the dataset.

Table 4: Computation time (in seconds) for pre-processing using
CPU and GPU.

dataset
quasi-interpolation min/max construction

CPU GPU speed-up CPU GPU speed-up

MRI-Head 2.412 0.140 17.2 95.542 3.555 26.9
VisMale 1.204 0.096 12.6 47.598 1.777 26.8
CT-Head 0.958 0.089 10.8 41.320 1.723 24.0
Carp 4.654 0.251 18.6 185.502 7.146 26.0

5.4. Empty Space Skipping

Table 5: Performance (in fps) comparison according to the number
of min/max cells.

dataset not used 83 163 323 643 speed-up

MRI-Head 27.2 43.4 57.9 65.2 31.5 ≤ 2.40
VisMale 30.0 60.0 66.6 68.9 40.0 ≤ 2.30
CT-Head 14.9 31.5 43.0 54.6 35.3 ≤ 3.66
Carp 4.5 11.5 17.6 22.3 22.1 ≤ 4.96

Our raycasting kernel reduces the computational over-
head by using fine-grained min/max cells for efficient empty
space skipping. Figure 9 illustrates the computational
overhead with and without empty space skipping and Ta-
ble 5 compares the performance. The performance gain
is up to ≈ 4.95-fold. Again, the performance gain is rela-
tively proportional to the size of the dataset. For optimal
performance we need to consider the trade-off according
to the number of min/max cells. A large number of small
cells induces a tight bound of the isosurface, but comes
with a large overhead due to the primitives. On the other
hand, a small number of large cells reduces the overhead
but bounds the isosurface loosely. In the experiments, 323

number of cells always resulted in the best performance
(Table 5).

5.5. FCC Dataset Indexing Scheme

Table 6: Performance (in fps) comparison of two indexing schemes.

dataset 4-channel 1-channel speed-up

MRI-Head 33.6 65.2 1.9
VisMale 31.5 68.9 2.2
CT-Head 25.3 54.6 2.2
Carp 7.3 22.3 3.1

Since the suggested four-channel 3D texture compactly
stores the FCC dataset, it is expected to reduce cache
misses, but it also induces computational overhead due
to index mapping, while it is composed of bitwise opera-
tions. But there is a more severe problem in adapting this
scheme. Since current graphics hardware does not allow
selective fetching of one texture channel, we have to fetch
all four channels and select one using a dot product oper-
ation, which results in massive performance degradation.
In other words, instead of

% texelFetch(tex ,x,y,z)[idx]
texelFetch(tex ,x,y,z)[idx]

we have to make the following call:

dot(texelFetch(tex ,x,y,z),vec4(idx==0,idx==1,idx==2,←↩
idx ==3))

Table 6 shows the performance comparison with re-
spect to the indexing schemes. In all cases, the one-channel
scheme required twice the memory footprint as the four-
channel scheme. Note that all of the previous performance
measurements were taken using a one-channel texture to
obtain the best performance.

5.6. Quasi-Interpolation Prefilter

Figure 10 compares the reconstruction quality with and
without quasi-interpolation prefilter applied. As can be
seen, when the prefilter was not applied, the ‘valleys’ of
the rims were shallower due to the oversmoothing aliasing.

7

5.7. Comparison with Other Reconstruction Schemes

Table 7: Configurations and performance comparison for Figure 11.

size speed (fps)

(b) 80× 80× 160=1, 024, 000 61.14
(c) 64× 64× 128× 2=1, 048, 576 10.66
(d) 50× 50× 101× 4=1, 010, 000 25.11

Figure 11 compares the quality of three reconstruction
schemes with comparable dataset sizes (Table 7). For the
Cartesian reconstruction, the tri-cubic B-spline filter was
used and its GPU implementation was as described by Sigg
and Hadwiger [20]. For the BCC reconstruction, the eight-
direction box-spline was used and its GPU implementation
was as described by Finkbeiner et al. [8]. They are the
fastest GPU raycasters on each lattice so far. Note that
they have higher approximation order than our scheme and
therefore require more data for evaluation in general. For a
fair comparison, no min/max octree was used and the nor-
mal computation was done entirely by the finite difference
method. Also, the BCC and FCC datasets were stored
in unpacked form to reduce the data fetching overhead.
Therefore, while the sizes of the BCC and FCC datasets
that were actually used for the evaluations were as shown
in Table 7, the sizes of the 3D texture are quadruple and
twice as the Cartesian scheme, respectively.

When reconsructed on each lattice with the correspond-
ing quasi-interpolation prefilter applied, reconstruction on
the BCC lattice using the eight-direction box-spline showed
the lowest aliasing, and reconsruction on the Cartesian lat-
tice using the tri-cubic B-spline showed the highest alias-
ing. Table 7 compares the performance of the three schemes.
While the Cartesian reconstruction scheme requires many
data samples (43 = 64) for evaluation, Sigg and Had-
wiger [20] proposed a novel approach that requires only
16 data fetches, and hence results in superb performance.
Comparing the BCC and FCC schemes, the FCC scheme
showed better performance due to the small number of
data fetches and lower degree, and hence lower complex-
ity, of the spline formula. In summary, the method can be
considered a practical reconstruction scheme that compro-
mises between high quality and performance.

6. Conclusion and Future Work

We implemented a real-time GPU raycaster for FCC
datasets. Superior performance was achieved by GPU
pre-processing, efficient evaluation of the spline value and
its gradient, and efficient empty space skipping. A novel
indexing scheme for FCC datasets was proposed, but it
showed a poor performance in current hardware due to
the limitation of conditional channel selection.

In future work, we plan to improve the raycaster with
an adaptive stepsize. Also, it may be possible to find the
exact root for isosurface values using the closed-form of

cubic polynomial roots. While our implementation adopts
gradients that exactly match the underlying spline, it has
been shown that this strategy is not necessary for visu-
alization and we can improve rendering quality using dif-
ferent gradient estimation schemes [10]. Finding such a
scheme is another future work. Finally, we consider devel-
oping an efficient direct volume raycaster.

7. Acknowledgments

The author deeply appreciates professor Jörg Peters
and professor Alireza Entezari for their valuable comments
on this work. This research was supported by the Basic
Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of
Education, Science and Technology (2010-0024007).

References

[1] John Horton Conway and Neil J. A. Sloane. Sphere Packings,
Lattices and Groups. Springer-Verlag New York, Inc., New
York, NY, USA, 3rd edition, 1998.

[2] Balázs Csébfalvi and Markus Hadwiger. Prefiltered B-spline
reconstruction for hardware-accelerated rendering of optimally
sampled volumetric data. In Workshop Vision, Modeling, and
Visualization, pages 325–332, 2006.

[3] Carl de Boor, Klaus Höllig, and Sherman Riemenschneider. Box
splines. Springer-Verlag New York, Inc., 1993.

[4] Klaus Engel, Markus Hadwiger, Joe Kniss, Christof Rezk-
Salama, and Daniel Weiskopf. Real-Time Volume Graphics.
A K Peters, Ltd., July 2006. ISBN 1568812663.

[5] Alireza Entezari. Optimal Sampling Lattices and Trivariate Box
Splines. PhD thesis, Simon Fraser University, 2007.

[6] Alireza Entezari, Ramsay Dyer, and Torsten Möller. Linear
and cubic box splines for the body centered cubic lattice. In
Proceedings of the IEEE Conference on Visualization, pages
11–18. IEEE Computer Society, 2004.

[7] Alireza Entezari, Dimitri Van De Ville, and Torsten Möller.
Practical box splines for reconstruction on the body centered
cubic lattice. IEEE Transactions on Visualization and Com-
puter Graphics, 14(2):313–328, March 2008.

[8] Bernhard Finkbeiner, Alireza Entezari, Dimitri Van De Ville,
and Torsten Möller. Efficient volume rendering on the body
centered cubic lattice using box splines. Computers & Graphics,
34(4):409–423, August 2010.

[9] Markus Hadwiger, Christian Sigg, Henning Scharsach, Katja
Bühler, and Markus Gross. Real-time ray-casting and advanced
shading of discrete isosurfaces. Computer Graphics Forum, 24
(3):303–312, September 2005. ISSN 1467-8659.

[10] Zahid Hossain, Usman Alim, and Torsten Möller. Towards high
quality gradient estimation on regular lattices. IEEE Transac-
tions on Visualization and Computer Graphics, 17(4):426–439,
April 2011.

[11] Luis Ibáñez, Chafiaâ Hamitouche, and Christian Roux. Ray-
tracing and 3-D objects representation in the BCC and FCC
grids. Lecture Notes in Computer Science, 1347:235–241, 1997.

[12] Minho Kim and Jörg Peters. Fast and stable evaluation of box-
splines via the Bernstein-Bézier form. Numerical Algorithms,
50(4):381–399, April 2009.

[13] Minho Kim and Jörg Peters. Symmetric box-splines on root
lattices. Journal of Computational and Applied Mathematics,
235(14):3972–3989, May 2011.

[14] Minho Kim, Alireza Entezari, and Jörg Peters. Box spline re-
construction on the face-centered cubic lattice. IEEE Trans-
actions on Visualization and Computer Graphics, 14(6):1523–
1530, November-December 2008.

8

[15] Hans R. Künsch, Erik Agrell, and Fred A. Hamprecht. Opti-
mal lattices for sampling. IEEE Transactions on Information
Theory, 51(2):634–647, 2005.

[16] MATLAB. version 7.8.0 (R2009a). The MathWorks Inc., Nat-
ick, Massachusetts, 2012.

[17] Kaloian Petkov, Feng Qiu, Zhe Fan, Arie E. Kaufman, and
Klaus Mueller. Efficient LBM visual simulation on face-centered
cubic lattices. IEEE Transactions on Visualization and Com-
puter Graphics, 15:802–814, September 2009. ISSN 1077-2626.

[18] Feng Qiu, Fang Xu, Zhe Fan, Neophytou Neophytos, Arie Kauf-
man, and Klaus Mueller. Lattice-based volumetric global illu-
mination. IEEE Transactions on Visualization and Computer
Graphics, 13(6):1576–1583, 2007.

[19] Stefan Roettger. Volume library (online), January 2012. URL
http://www9.informatik.uni-erlangen.de/External/vollib.

[20] Christian Sigg and Markus Hadwiger. Fast third-order texture
filtering. In GPU Gems 2, chapter 20, pages 313–329. Addison-
Wesley, 2005.

9

(a) MRI-Head (b) VisMale

(c) CT-Head (d) Carp

Figure 7: Rendered images. Experimental system: Intel® Core™ i7 860 @2.80 GHz, Windows 7 Professional (64 bit), 8GB memory, NVIDIA
GeForce GTX 460 (driver 285.86).

(a) (b) (c) (d)

Figure 8: Rendering results where normals are calculated by (a) the analytic formula and finite difference methods with (b) δ = 10−7, (c)
δ = 10−3, and (d) δ = 10−1.

10

Figure 9: Visualization of the computation overhead for the VisMale dataset. (top) Without and (bottom) with the 323 min/max cubes.
(left) Entry and (center) exit points are normalized to [0, 1]3 and color-coded. (right) The number of evaluations for each ray before hitting
the isosurface is normalized to grayscale color.

(a) (b) (c)

(d) (e) (f)

Figure 10: (Left) Original, (middle) with and (right) without a quasi-interpolation prefilter. The “valleys” in (f) are shallower than those in
(e).

11

(a) (b)

(c) (d)

Figure 11: Reconstruction of Carp datasets. (a) Mcc on the original dataset (256× 256× 512), (b) Mcc on the Cartesian lattice, (c) Mbcc on
the BCC lattice, and (d) Mfcc on the FCC lattice. For each dataset, the corresponding quasi-interpolation prefilter was applied.

12

