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Abstract

Sampling and reconstruction of generic multivariate functions is more efficient on non-Cartesian root lattices,
such as the BCC (Body-Centered Cubic) lattice, than on the Cartesian lattice. We introduce a new n × n
generator matrix A∗ that enables, in n variables, for efficient reconstruction on the non-Cartesian root lattice
A∗

n by a symmetric box-spline family M∗
r . A∗

2 is the hexagonal lattice and A∗
3 is the BCC lattice. We point

out the similarities and differences of M∗
r to the popular Cartesian-shifted box-spline family Mr, document

the main properties of M∗
r and the partition induced by its knot planes and construct, in n variables, the

optimal quasi-interpolant of M∗
2 .

1. Introduction

Box-splines shifted on the Cartesian lattice are a useful generalization of uniform B-splines to several vari-
ables. In particular, a family Mr of n-variate box-splines is justly popular due to their linear independence
and approximation properties (Section 3.3). Members of Mr are defined by r-fold convolution, in the n
directions of the Cartesian grid plus a diagonal, so that the footprint of these box-splines is asymmetrically
distorted in the diagonal direction. To make reconstruction of vector fields less biased, convolution and
shifts on 2- and 3-dimensional non-Cartesian lattices have recently been advocated [33, 16, 17, 18, 15, 24].
For example, Kim et al. [24] show that reconstruction by a trivariate 6-direction C1 box-spline of data on
the FCC (Face-Centered Cubic) lattice both is more time-efficient by 35% and results in less aliasing of level
sets than the standard C1 tri-quadratic B-spline for the same number of samples on the Cartesian grid.
Entezari et al. [16] show that the quality of reconstruction of the C2 tri-cubic B-spline on the Cartesian
grid is matched by reconstruction on the BCC lattice with the 8-direction C2 box-spline, but using only
70% of data. In both cases, concrete implementations have established a computational speed advantage
corresponding to the reduction of the number of convolution directions over the tensor-product B-spline of
the same smoothness and approximation order.

In this paper, we generalize the bivariate box-splines on the hexagonal lattice and the trivariate box-splines
on the BCC lattice to symmetric n-variate box-splines M∗

r (Section 5.3) defined by convolving along the
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(a) n = 1 (b) n = 2

Figure 1: Orthogonal projection of a slab of unit cubes along the diagonal direction for (a) n = 1 and (b)
n = 2.

nearest neighbor directions of the A∗
n lattice (Section 3.2). The A∗

n lattice is well-known in crystallography
and discrete geometry. There it occurs (and is therefore defined as) a lattice embedded in an n-dimensional
hyperplane of Rn+1. By contrast to this standard formulation, we re-define the A∗

n lattice directly in Rn by
introducing a new n×n generator matrix A∗. Then the geometric construction of the shifts of the symmetric
linear box-spline M∗

1 on the A∗
n lattice simplifies to the classical construction of n-variate box-splines by

projection: The shifts of the symmetric linear box-spline on A∗
n are the orthogonal projection of a slab of

thickness 1 decomposed into unit cubes along the diagonal of the cubes (Figure 1). By comparison, M1

(see Section 3.3) has the same preimage, but for n ≥ 2, its support is distorted by its anisotropic direction
matrix (Figure 7 (d)). Nevertheless, we can take full advantage of the close relationship of M∗

1 and M1 to
analyze M∗

1 . That is, this paper can apply existing mathematical machinery (non-trivially) in the service
of bringing together ideas from signal processing and spline theory to show that the best reconstruction
lattices have an associated symmetric box-spline family, provided that the newly derived matrix A∗ is used
to generate A∗

n.

Specifically, this paper documents in any number of variables n, the support, its partition, the desirable
properties shared with Mr and, for the important case r = 2, the quasi-interpolant construction associated
with M∗

2 . The four theorems of the paper summarize these results: Theorem 1 introduces the new square
generator matrix A∗, Theorem 2 lists the properties of M∗

r , Theorem 3 describes the support and partition
induced by M∗

r , and Theorem 4 presents the optimal quasi-interpolant of M∗
2 .

Overview of the paper. The paper combines ideas from signal processing and spline theory. So, after
a review of related work in Section 2, we recall the pertinent facts of both areas used in the later proofs.
Section 3 consists of subsection 3.1: lattice packing and optimal sampling, 3.2: the root lattices An and A∗

n

and their standard geometric construction as subsets of Rn+1, 3.3: the box-splines Mr. Readers conversant
with optimal sampling lattices and box splines (in the notation of de Boor et al. [13]) might skip Section 3
after taking a look at our symbol glossary at its beginning. Sections 4 and 5 prepare for the main Section 6.
Section 4 relates box-splines on non-Cartesian lattices to box splines on the Cartesian grid and shows how
quasi-interpolation can be inherited by change-of-variables. Section 5 shows that the lattice A∗

n allows for a
symmetric box-spline family M∗

r when represented in the form A∗Zn where A∗ is a square generator matrix
(Section 5.2) different from the standard geometric construction of A∗

n embedded in Rn+1. Section 6 then
documents the properties of the symmetric box-spline family M∗

r on A∗
n.
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2. Related Work

Piecewise linear hat functions, in particular the shifts of the bivariate 3-direction linear box-spline and of
the trivariate 4-direction linear box-splines are popular basis functions for the 2D and 3D Finite Element
Method, respectively. Linear hat functions apply to general triangular or tetrahedral meshes, but higher-
degree box-splines, obtained by convolution along the mesh directions, require structured meshes. For a
small sample of the literature on the bivariate 3-direction box-spline see [11, 12, 23, 7, 22, 2]. Chui and Lai
[8] and Lai [26] derived efficient evaluation of convolutions of hat functions via the BB(Bernstein-Bézier)-
form. Casciola et al. [4] extended this approach to three variables. Chang et al. [5, 6] proposed a volumetric
subdivision scheme based on the trivariate 8-direction box-spline, M2.

On the n-dimensional Cartesian grid, Arge and Dæhlen [1] investigated interpolation by Mr, and Shi and
Wang [31] discussed the associated spline space. The literature refers to the space decomposition corre-
sponding to the polynomial pieces of Mr as (n + 1)-directional mesh.

The root lattices An and A∗
n are well-known in crystallography, discrete geometry and related areas. Con-

way and Sloane [9] provide a standard treatise of the subject. Here the lattices are embedded in Rn+1

(Section 3.2). Hamitouche et al. [21] recognized the need for square generator matrices that embed the
An and A∗

n lattices in Rn. Their definition, in iterative bottom-up fashion, is however unnecessarily more
complex and the resulting matrices are more complicated than the ones we will present in Section 5.2.

Frederickson [19] first discussed the (symmetric) bivariate splines on the hexagonal lattice. The hexagonal
lattice is known to be the optimal sampling lattice in two dimensions and is equivalent to the A∗

2 lattice.
Van De Ville et al. [33] proposed hex-splines on the hexagonal lattice which share many properties with
the box-splines on the hexagonal lattice. Similarly, the BCC lattice is the optimal 3D sampling lattice for
functions with isotropic and band-limited frequencies [17, 15] and is equivalent to the A∗

3 lattice [9]. Entezari
et al. [16, 17, 18] and Entezari [15] were the first to investigate the (symmetric) trivariate 4- and 8-direction
box-splines on the BCC lattice.

3. Notation and Background

The dimension of vectors and matrices is either explicitly given or is determined by context. Some of the
specific vectors and matrices are:

� ik the k-th unit vector,

� In the n × n identity matrix,

� 0 :=
[
0 · · · 0

]t
the zero vector,

� j :=
[
1 · · · 1

]t
the ‘diagonal vector’,

� Hn
j the n-dimensional hyperplane, embedded in Rn+1, including 0 and with normal j,

� Jn := jjt the n × n matrix composed of 1s only.

The dot product is defined as x · y := xty ∈ R.

� Following the convention of de Boor et al. [13], an n × m matrix will be interpreted both as

– a multi-set (bag) of column vectors or

– a linear transformation Rm → Rn.

� For the matrices Ξ and Z, Ξ\Z := {ζ : ζ ∈ Ξ and ζ /∈ Z}.
� Column vectors are used as either vectors or points depending on the context.
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� Linear transformations, e.g., Pn (Section 3.2), box-spline matrices of directions (Section 3.3), e.g., Ξ

and Tr, and lattice generator matrices (Section 3.1), such as G, A∗
P and A, are typeset in upper bold.

� Lattices are typeset in calligraphic upper case; e.g., Ln and An.

� v(j) denotes the j-th entry of the vector v.

� X(i, j) denotes the (i, j)-th entry of the matrix X.

� conv(P ) is the convex hull of the points in P .

A matrix B ∈ Zn×m, n ≤ m, is unimodular [13, (II.57)] if

detZ = ±1, ∀Z ⊆ B : Z is square and rankZ = n.

If n = m and B ∈ Zn×n is unimodular then B−1 ∈ Zn×n.

3.1. Lattice packing and optimal sampling

A lattice is a discrete subgroup of maximal rank in a Euclidean vector space [28]. Given an m × n matrix
G with m ≥ n and rankG = n, all integer linear combinations of its columns, GZn, define (the points of)
an n-dimensional lattice, say Ln, embedded in Rm:

Ln := {Gj ∈ Rm : j ∈ Zn}.

G is called a generator matrix of Ln, and we call the columns of G a basis of Ln. The choice of a generator
matrix for a lattice is not unique [28].

Lemma 1. If U ∈ Zn×n is unimodular then G and GU generate the same lattice points: GZn = GUZn.

Proof. Since UZn ⊆ Zn, G(UZn) ⊆ GZn. Conversely, GZn = (GU)(U−1Zn) ⊆ GUZn since U−1Zn ⊆
Zn.

If a lattice can be obtained from another by rotation, reflection and uniform change of scale, we say they
are equivalent, written ∼= [9]. Any n-dimensional lattice Ln has a dual lattice given by

L∗
n := {x ∈ Rm : x · u ∈ Z,∀u ∈ Ln} . (1)

If G is a square generator matrix of Ln, then G−t is a square generator matrix of L∗
n [9]. If G is the generator

matrix of Ln, an orthogonal matrix B is in the symmetry group (or automorphism group) Aut(Ln), i.e. the set
of isometries with one invariant lattice point that transform Ln to itself, if and only if there is a unimodular
matrix U ∈ Zn×n such that [9] GU = BG. Therefore, the order of Aut(Ln) tells how symmetric a lattice
is; Ln and L∗

n have the same symmetry group.

In many geometric problems related to lattices, root lattices defined via root systems [9] provide good
solutions due to their inherent symmetry. Symmetry also makes them good sampling lattices for the signals
with isotropic frequencies. In this paper we focus on the root lattices An and A∗

n.

Let XG(x) :=
∑

k∈Zn δ(x−Gk) be the Dirac comb function that samples a function f on the lattice GZn,

G ∈ Rn×n, and denote by f̂(ω) = F {f} (ω) the Fourier transform of f . Since [14]

F {fXG} (ω) =
1

|detG|
∑

k∈Zn

f̂(ω − G−tk), (2)

the Fourier transform of the sampling fXG replicates f̂(ω) on G−tZn, the (scaled) dual lattice of GZn.
The choice of G determines the ‘packing density’ as explained next.
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Figure 2: Lattice packing (frequency domain) and efficient sampling (primal domain). The maroon, bold
star shapes in (a) and (c) represent the band-limited Fourier transform F {f} of a given function f ; the
gray replicas are the transforms F {fXG1

} and F {fXG2
} of samples fXG1

and fXG2
on lattices with

generator matrices, G1 and G2 respectively. From both transforms, the original signal can be reconstructed
by removing the replicas with a low-pass filter (thick circle) and applying the inverse Fourier transform.
But the denser packing of replicas in Figure (a) is more efficient since it corresponds to a sparser sampling
lattice in the primal space, Figure (b).

Zn An A∗
n Dn (n ≥ 3) D∗

n (n ≥ 3)

2−n 2−n/2(n + 1)−1/2 nn/2

2n(n + 1)(n−1)/2
2−(n+2)/2

{
31.52−5 (n = 3)

2−(n−1) (n > 3)

Table 1: Center density of several root lattices. Dn := {(i1, . . . , in) :
∑

ik is even} [9]. See Section 3.2 for
the definition of An and A∗

n.

The sphere packing problem, “how densely can we pack identical spheres in Rn?”, is one of the oldest
problems in geometry [9]. The lattice packing problem is to find the lattice that induces the densest sphere
packing when the spheres are located at the lattice points. The lattice packing problem is closely related to
the optimal sampling lattice for multi-dimensional signal processing. Assuming the frequency of the input
signal is isotropic and band-limited, we can reconstruct the original signal using a sphere-shaped filter in
the frequency domain (Figure 2(a) and 2(c)). Since the lattice in the frequency domain is the dual of
the sampling lattice, the more densely we can pack the spheres (reconstruction filters) in the frequency
domain, the sparser a sampling lattice we can choose in the space domain to reconstruct the original signal
(Figure 2). Therefore, for input signals with isotropic band-limited frequencies, the n-dimensional optimal
sampling lattice is the dual of the n-dimensional optimal sphere packing lattice [17, 25, 15].

The density of a lattice packing is the proportion of the space occupied by the spheres when packed. The
center density of a lattice is the number of the lattice points per unit volume, which can be obtained by
dividing its density by the volume of the unit sphere [9]. Therefore, larger (center) density implies that its
dual is a more efficient sampling lattice. Table 1 and Figure 3 respectively show the center density and the
density of several important root lattices. Both imply poorer sampling efficiency of the Cartesian lattice Zn

compared to other root lattices.
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Figure 3: Density of several root lattices up to dimension 10.

3.2. The root lattices An and A∗
n as subsets of Rn+1

The (n-dimensional) lattice An embedded in Rn+1 has points {x ∈ Zn+1 : j · x = 0} = Zn+1 ∩ Hn
j [28] and

can be generated by the (n + 1) × n matrix [9, page 109]

AC :=




−1
1 −1

1
. . .

. . . −1
1 −1

1




∈ Z(n+1)×n. (3)

We can easily check (see also [9, page 115]) that its dual A∗
n can be generated by the (n + 1) × n matrix

A∗
C :=




1 · · · 1 −n/(n + 1)
−1 1/(n + 1)

. . .
...

−1 1/(n + 1)
1/(n + 1)




=




jt −n/(n + 1)
−In−1 j/(n + 1)

0t 1/(n + 1)


 ∈ R(n+1)×n.

Some examples of An and A∗
n are:

� A2 and A∗
2 are equivalent to the hexagonal lattice.

� A3
∼= D3 is equivalent to the FCC (Face-Centered Cubic) lattice.

� A∗
3
∼= D∗

3 is equivalent to the BCC (Body-Centered Cubic) lattice.

A∗
n is the optimal sampling lattice in 2- and in 3-dimensions [30, 32, 17, 16, 25, 18, 29, 15]. In dimensions

higher than 3, Figure 3 shows that An packs spheres better than the Cartesian lattice, making A∗
n a better

sampling lattice than Zn.

The basis of An can be taken from an n-dimensional equilateral simplex.
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Lemma 2 (Classic geometric construction of An and A∗
n in Rn+1).

(i) Let σn be an equilateral n-dimensional simplex one of whose vertices is located at the origin. Then the
n edges of σn emanating from the origin form a basis of a lattice equivalent to An.

(ii) A∗
n can be generated by the non-invertible elementary matrix

Pn+1 := In+1 −
1

n + 1
Jn+1 ∈ R(n+1)×(n+1), (4)

the orthogonal projection of the (n+1)-dimensional Cartesian lattice Zn+1 along the diagonal direction
j.

Proof. (i) Let

U :=




1
1 1
...

...
. . .

1 1 · · · 1


 ∈ Zn×n, hence U−1 =




1
−1 1

−1
. . .

. . . 1
−1 1




.

By Lemma 1,

ACU =

[
−In

jt

]
∈ Z(n+1)×n, (5)

also generates An. Since

{
‖v‖2 =

√
2 ∀v ∈ ACU

‖vj − vk‖2 =
√

2 ∀vj ,vk ∈ ACU,vj 6= vk,

the simplex conv({0} ∪
⋃

v∈ACU{v}) is equilateral hence equivalent to any σn.

(ii) For

U :=

[
0 −In−1

−1 −jt

]
∈ Zn×n hence U−1 =

[
jt −1

−In−1 0

]
,

we verify that

A∗
P := A∗

CU =
1

n + 1

[
(n + 1)In − Jn

−jt

]
∈ R(n+1)×n, (6)

where A∗
P is the matrix of the first n columns of Pn+1. The last column of Pn+1 is an integer linear

combination of the first n columns, A∗
P. By Lemma 1, the claim follows.

3.3. The box-splines Mr

We briefly review the later-referenced facts about box-splines following de Boor et al. [13] and introduce the
box-splines Mr.

A box-spline MΞ is defined by its matrix (multi-set) of directions Ξ. Unless mentioned specifically, we
assume that Ξ ∈ Zn×m (m ≥ n) and ranΞ = Rn. Geometrically, the value at x ∈ ranΞ of the box-spline
MΞ is defined as the (normalized) shadow density of the (m − n)-dimensional volume of the intersection
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between the preimage of x and the m-dimensional half-open unit cube := [0..1)m: [13, (I.3)] (see e.g.,
Figure 1)

MΞ(x) := volm−n

(
Ξ−1{x} ∩

)
/|detΞ| (7)

where Ξ is viewed as a linear transformation Ξ : Rm → Rn and the preimage of x is defined as [13, (I.7)]

Ξ−1{x} = Ξt
(
ΞΞt

)−1 {x} + kerΞ. (8)

Let H (Ξ) be the collection of all the hyperplanes spanned by the columns of Ξ. We call the shifts of all the
hyperplanes in H (Ξ) knot planes: [13, page 16]

Γ (Ξ) :=
⋃

H∈H(Ξ)

H + Zn. (9)

The box-spline MΞ with Ξ ∈ Zn×m is a piecewise polynomial function on ranΞ. It is delineated by the
knot planes and is of degree less than or equal to [13, page 9]

k (Ξ) := m − dim ranΞ. (10)

Specifically, k (Ξ) = m − n if ranΞ = Rn.

The centered box-spline M c
Ξ of MΞ is [13, (I.21)]

M c
Ξ := MΞ(· +

∑

ξ∈Ξ

ξ/2). (11)

Given an invertible linear map L on Rn, [13, (I.23)]

MΞ = |detL|MLΞ ◦ L. (12)

The Fourier transform of MΞ is [13, (I.17)]

M̂Ξ(ω) := F {MΞ} (ω) =
∏

ξ∈Ξ

1 − exp(−iξ · ω)

iξ · ω , i :=
√
−1. (13)

If MΞ is centered, i.e. if MΞ = M c
Ξ, then [13, page 11]

M̂Ξ(ω) =
∏

ξ∈Ξ

sinc(ξ · ω). (14)

By [13, page 9], the (closed) support of MΞ consists of the set

suppMΞ = Ξ = {
∑

ξ∈Ξ

ξtξ : 0 ≤ tξ ≤ 1} (15)

where := [0..1]m is the closed unit cube and tξ is the element of t associated with ξ by Ξt. Assuming
ranΞ = Rn, the set of all bases of Ξ is denoted [13, page 8]

B(Ξ) := {Z ⊆ Ξ : #Z = rankZ = n} . (16)

The support of MΞ is composed of the parallelepipeds spanned by Z ∈ B(Ξ): For ranΞ = Rn there exists
points αZ ∈ Ξ{0, 1}m, Z ∈ B(Ξ), so that Ξ is the essentially disjoint union of the sets [13, I.53]

Z +αZ, Z ∈ B(Ξ). (17)
8



The cardinal spline space [13, (II.1)]

SΞ := span (MΞ(· − j))j∈Zn (18)

is the spline space spanned by the shifts of MΞ on Zn. The sequence (MΞ(· − j))j∈Zn is linearly inde-

pendent if and only if Ξ is unimodular [13, page 41].

The map

MΞ∗′ : f 7→
∑

j∈Zn

MΞ(· − j)f(j) (19)

reproduces the polynomials in ΠMΞ
:= Π ∩ SΞ where Π is the set of all the polynomials on Rn [13,

page 52]. Specifically, Πm(Ξ) ⊆ ΠMΞ
where

� Πα is the set of polynomials of (total) degree up to α,

� m(Ξ) := min {#Z : Z ∈ A(Ξ)} − 1 and

� A(Ξ) := {Z ⊆ Ξ : Ξ\Z does not span}.
In other words, MΞ∗′ can reproduce all the polynomials up to (total) degree m(Ξ). The following quasi-

interpolant QΞ for a box-spline MΞ provides a fast way of approximating a function f with a spline
QΞf ∈ SΞ [13]. Here we focus on the quasi-interpolant that provides the maximal approximation order

m(Ξ) + 1: [13, page 72]

(QΞf)(x) :=
∑

j∈Zn

MΞ(x − j)λΞ (f(· + j)) (20)

where λΞ is the linear functional [13, (III.22)]

λΞf :=
∑

|α|≤m(Ξ)

gα(0) (Dαf) (0) (21)

and α ∈ Zn
+ is a multi-index with |α| :=

∑n
ν=1 α(ν). The Appell sequence {gα} in (21) can be computed

either recursively as {
g0 := [[]]

0

gα := [[]]
α −∑β 6=α(µΞ[[]]

α−β
)gβ

([13, (III.19)])

where
µΞ (f) :=

∑

j

MΞ(j)f(−j), (22)

or from the Fourier transform M̂Ξ: [13, (III.34)]

gα(0) =
(
[[ − iD]]

α
(
1/M̂Ξ

))
(0). (23)

Note that [[]]
α

is the normalized α-power function

[[x]]
α

:= xα/α! :=

n∏

ν=1

x(ν)α(ν)

α(ν)!
.

The Box-Spline Mr. Box-splines defined by possibly repeated (n + 1) distinct convolution directions are
also called box-splines on the (n + 1)-directional mesh [1]. Given the n × (n + 1) matrix of directions

T1 :=
[

In −j
]

=
[

i1 · · · in −j
]
∈ Zn×(n+1), (24)

9



the box-spline with multiplicity r in each direction is defined by the n× r(n+1) matrix of directions Tr [13,
page 80] with the multi-set

Tr :=
r⋃

j=1

T1 and we abbreviate Mr := MTr
. (25)

As pointed out in Section 2, this family of box-splines has been widely used. Since T1 =
[
1 −1

]
in the

univariate case, Mr can be viewed as a generalization of the uniform B-splines of odd degree to arbitrary
dimensions.

4. Box-splines on Non-Cartesian Lattices

By (12), given a square generator matrix G, any weighted sum of the shifts of the (scaled) box-spline

M̃Ξ := |detG|MGΞ (26)

on the (possibly non-Cartesian) lattice GZn can be expressed as a weighted sum of the shifts of MΞ on the
Cartesian lattice Zn by change of variables:

∑

j∈GZn

M̃Ξ(· − j)a(j) =
∑

k∈Zn

MΞ(G−1 · −k)a(Gk) (27)

where a : GZn → R is the mesh function (spline coefficients) on GZn. In the bivariate setting, de Boor and
Höllig [10, page 650] already pointed to this relationship.

We denote the spline space spanned by the shifts of M̃Ξ on GZn by

SG
Ξ := span

(
M̃Ξ(· − j)

)
j∈GZn

.

This notation becomes consistent with (18) by omitting G = In and defining

SΞ := SIn

Ξ .

Lemma 3 (Quasi-interpolant). Let Dα
G :=

∏
v∈G Dαv

v be the composition of directional derivatives Dv :=∑n
j=1 v(j)Dj along the columns of G and {gα} the Appell sequence of λΞ (21). The quasi-interpolant QG

Ξ

for SG
Ξ defined by the functional

λG
Ξ (f (· + j)) := λΞ

(
(f ◦ G)

(
· + G−1j

))
(28)

=
∑

|α|≤m(Ξ)

gα(0) (Dα
Gf) (j) , j ∈ GZn (29)

provides the same maximal approximation power as does QΞ defined by λΞ for SΞ.

Proof. If we define

(
QG

Ξ f
)
(x) := (QΞ (f ◦ G)) (G−1x)

then, since f = f ◦ G ◦ G−1,

(
f − QG

Ξ f
)
(x) = ((f ◦ G) − QΞ (f ◦ G)) (G−1x) =

(
f̃ − QΞf̃

)
(x̃),

10



for f̃ := f ◦ G and x̃ := G−1x, i.e., QG
Ξ has the same approximation power as QΞ. Since

(QΞ (f ◦ G)) (G−1x) =
∑

k∈Zn

MΞ(G−1x − k)λΞ ((f ◦ G) (· + k))

=
∑

j∈GZn

|detG|MGΞ(x − j)λΞ

(
(f ◦ G) (· + G−1j)

)
,

and

Dk (f ◦ G) = lim
h→0

f (G · +hGik) − f (G·)
h

= (DGikf) ◦ G,

the corresponding functional λG
Ξ is for j ∈ GZn

λG
Ξ (f (· + j)) = λΞ

(
(f ◦ G)

(
· + G−1j

))

=
∑

|α|≤m(Ξ)

gα(0) (Dα (f ◦ G))
(
G−1j

)
(by (21))

=
∑

|α|≤m(Ξ)

gα(0) (Dα
Gf) (j) .

5. The Representation A∗Zn of A∗

n

Next, in Section 5.1, we show the need for a non-standard representation of the efficient reconstruction
lattice A∗

n. This representation, A∗Zn, is introduced in Section 5.2 and Section 5.3 defines the family of
box-splines M∗

r := Mr ◦ A∗−1 on A∗
n.

5.1. Bias of box-splines M1

The box-spline family Mr and the A∗
n lattice have a close relationship that becomes apparent when we

compare the spline spaces

S
A∗

P

Pn+1
:= span(M+

1 (· − j))j∈A∗

P
Zn and ST1

:= span(M1(· − j))j∈Zn

where M+
1 := |detA∗

P|MPn+1
and A∗

P was defined in (6). Since

A∗
P

t
A∗

P = In − Jn/(n + 1) = In − jjt/(n + 1) (30)

and by Sylvester’s determinant theorem,

det(In − jjt/(n + 1)) = det(I1 − n/(n + 1)) =
1

n + 1
, (31)

|detA∗
P| :=

√
det (A∗

P
tA∗

P) = 1/
√

n + 1. Since Pn+1 = In+1 − Jn+1/(n + 1) = A∗
PT1, the two spaces are

related by ∑

j∈A∗

P
Zn

M+
1 (· − j)a(j) =

∑

k∈Zn

M1(A
∗
P
−1 · −k)a(A∗

Pk)

where A∗
P
−1 is defined in the manner of (8). The equation is similar to (27) but A∗

P is not a square matrix!
The spline space ST1

, though widely used, corresponds to the Cartesian domain lattice that has poorer

sampling efficiency compared to other root lattices, as pointed out in Section 3.1. Moreover, while M+
1

11



spline space ST1
S

A∗

P

Pn+1
SA∗

T∗

1

M1 on Zn M+
1 on A∗

PZn M∗
1 on A∗Zn

symmetric box-spline X X

domain lattice is A∗
n X X

domain is Rn X X

Table 2: Box-spline spaces related by change of variables.

is symmetric, as shown below, M1 is not (Figure 4), since, according to (30), A∗
P is not an orthonormal

transformation:

A∗
P

t
A∗

P = In − 1

n + 1
Jn 6= In. (32)

Therefore M1 is a biased reconstruction filter.

By contrast, the domain lattice of the box-spline M+
1 is the efficient sampling lattice A∗

n and M+
1 is symmetric

since the directions, i.e. the columns of Pn+1, are

� isometric: they have the same lengths and

� isotropic: the inner product (hence the angle) between any two directions is the same.

The support of M+
1 inherits the symmetry of A∗

n (or An) since the directions in Pn+1 are taken from the
(non-parallel) directions from the origin to the nearest lattice points (of which there are 2(n+1), the kissing
number of A∗

n [9]).

The shifts of M+
1 are the box-splines obtained by projecting a slab as shown in Figure 1. The lattice A∗

n on
the hyperplane Hn

j ( Rn+1 partitions the slab. The next lemma shows that this partition can serve as an

alternate preimage of (the shifts of) suppM1, besides the box ∈ Rn+1 that defines it.

Lemma 4 (support of M1). Let := [0..1]n+1 and Pn+1 := In+1 −Jn+1/(n+1). The preimage of suppM1

with respect to the map T1 decomposes into kerT1 = span(j) and Pn+1 ( Hn
j ( Rn+1:

T1
−1(suppM1) = Pn+1 ⊕span(j).

Therefore T1 = suppM1 = T1Pn+1 .

Proof. Recall that A∗
P is composed of the first n columns of Pn+1. By (24) and (8),

T1
t(T1T1

t)−1 =
1

n + 1

[
(n + 1)In − Jn

−jt

]
= A∗

P ∈ R(n+1)×n,

and therefore
T1

−1{x} = A∗
Px + span(j), x ∈ Rn, j ∈ Rn+1. (33)

By (15), suppM1 = T1 ( Rn hence

T1
−1(T1 ) = A∗

PT1 ⊕span(j) = Pn+1 ⊕span(j).

Pn+1 is symmetric since the directions, i.e. the columns of Pn+1, are isometric and isotropic. However,
the domain embedded in the hyperplane Hn

j makes MPn+1
difficult to use in applications. We therefore now

introduce a square generator matrix A∗ of A∗
n.

12



= [0..1]
n+1
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suppM1 = T1 ( Rn

T1 = A∗
P
−1Pn+1

Pn+1 A∗
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Figure 4: Symmetry of the support of MPn+1
and asymmetry of the support of M1.
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(b) A+Z2 ∼= A2

Figure 5: Geometric construction of An in Rn.

5.2. The new square generator matrices A and A∗

To obtain a box-spline with a symmetric footprint in Rn (Figure 7(c) and 7(f)), we construct simple square
generator matrices for An and A∗

n. Consider a linear map that scales along the diagonal j by transforming
a point x ∈ Rn according to

x 7→ x +
c

n
(j · x)j,

where c is the scaling factor.

Theorem 1 (Geometric construction of An (Figure 5) and A∗
n in Rn (Figure 6) ).

(i) An can be generated by

A := In +
cn

n
Jn with cn := −1 ±

√
n + 1.

(ii) A∗
n can be generated by

A∗ := In +
c∗n
n

Jn with c∗n = −1 ± 1√
n + 1

.
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Figure 6: Geometric construction of A∗
n in Rn.
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Figure 7: (top) Shifts of linear univariate box-splines and (bottom) shifts of (the support) of linear bivariate
box-splines.
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Proof. (i) Any vector ij − ik for j 6= k is parallel to Hn−1
j and hence its length remains

√
2, unchanged

by A and regardless of the dimension n. To show that the n-dimensional simplex conv({Aij : 1 ≤ j ≤
n} ∪ {0}) is equilateral, we verify that the vectors ij satisfy

‖Aij‖2 =
√

Aij · Aij =

√(cn

n
+ 1
)2

+ (n − 1)
cn

2

n2
=

√
2. (34)

The claim follows by Lemma 2. The two different choices of cn produce the equivalent result with
respect to Hn−1

j because In − Jn/n projects ij on Hn−1
j .

(ii) Since

1 =
(
±
√

n + 1
)(

± 1√
n + 1

)
= (cn + 1) (c∗n + 1) = cnc∗n + cn + c∗n + 1,

cnc∗n + cn + c∗n = 0 and hence

AtA∗ = In + (cnc∗n + cn + c∗n)Jn = In.

Under the diagonal scaling A∗, the length of j becomes the same as those of the unit vectors (Figure 6):

|A∗j| = |A∗ij |, ∀1 ≤ j ≤ n. (35)

As with A, two roots of c∗n result in equivalent transformations with respect to Hn−1
j . For example, for

n = 2,

A∗ :=
1

2

[
1 ± 1/

√
3 −1 ± 1/

√
3

−1 ± 1/
√

3 1 ± 1/
√

3

]

and for n = 3, the BCC lattice, the two choices are

A∗ :=
1

6




5 −1 −1
−1 5 −1
−1 −1 5


 or

1

2




1 −1 −1
−1 1 −1
−1 −1 1


 .

5.3. A∗Zn as the domain lattice of M∗
r

We now interpret the columns of the matrix T∗
r := A∗Tr as direction vectors in Rn.

Lemma 5. T∗
1 is isometric and isotropic.

Proof. Since (35) implies isometry, we need only verify isotropy,

(A∗ (−j)) · (A∗ij) = − 1

n + 1
, ∀ij and (A∗ik) · (A∗ij) = − 1

n + 1
, ∀ij 6= ik.

Therefore MT∗

r
has the same symmetries as A∗

n and A∗Zn ∼= A∗
n can serve as a domain lattice for the

box-spline family (Figure 7(c) and 7(f))

M∗
r := |detA∗|MT∗

r
= Mr ◦ A∗−1. (36)

Since, in contrast to (33), for M1

(A∗
PA∗−1)t(A∗

PA∗−1) = In,

the symmetry of Pn+1 is preserved when computing the preimage,

T∗
1
−1{x} = A∗

PA∗−1{x} + kerT∗
1. (37)
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6. The Symmetric Box-spline Family M∗

r on A∗Zn

By (27), the weighted sum of the shifts of M∗
r on A∗Zn ∼= A∗

n can be expressed as

∑

j∈A∗Zn

M∗
r (· − j) a(j) =

∑

j∈Zn

Mr(A
∗−1 · −j)a(A∗j). (38)

Therefore M∗
r inherits most of the properties of Mr. In particular, by (10), Mr, hence M∗

r , is a piecewise
polynomial of (total) degree less than or equal to (n+1)r−n. We now summarize its properties (and those
of its scaled copy MT∗

r
, cf. (36))

Theorem 2 (Properties of M∗
r ). The box-spline M∗

r has the following properties:

(i) M∗
r is centered.

(ii) MT∗

r
= M−T∗

r

(iii) M∗
r = M∗

r (−·) is an even function.

(iv) The sequence (M∗
r (· − j))j∈A∗Zn is linearly independent.

(v) The map M∗
r ∗′ (19) can reproduce all the polynomials of (total) degree up to 2r − 1:

m(T∗
r) = 2r − 1.

Proof. (i) By (11),

M∗
r

c := M∗
r


· + 1

2

∑

ξ∈T∗

r

ξ


 = M∗

r (39)

since
∑

ξ∈T∗

r
ξ = 0.

(ii) By (14),

F
{
MT∗

r

}
(ω) =

∏

ξ∈T∗

r

sinc (ξ · ω)

and
F
{
M−T∗

r

}
(ω) =

∏

ξ∈−T∗

r

sinc (ξ · ω) =
∏

ξ∈T∗

r

sinc (−ξ · ω) =
∏

ξ∈T∗

r

sinc (ξ · ω)

because sinc is an even function. The claim holds since the Fourier transform is invertible.

(iii) By (12) and (i),
MT∗

r
= |det (−In)|M−T∗

r
◦ (−In) = MT∗

r
(−·). (40)

(iv) Since any n directions in T1 span Rn,

detZ = ±1, ∀Z ∈
⋃

ξ∈T1

T1\{ξ} = B(T1) = B(Tr)

and the sequence (Mr(· − j))j∈Zn is linearly independent. claim (iv) follows since by (38), the shifts
of Mr on the integer grid and the shifts of M∗

r on A∗Zn are related by an invertible affine change of
variables.
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Figure 8: Kuhn triangulation for n = 3.

(v) Due to (38), m(T∗
r) = m(Tr). For M1, we have to remove at least 2 directions so that the remaining

directions in T1 no longer span Rn, hence

m(T1) = ((n + 1) − (n − 1)) − 1 = 2 − 1 = 1.

In the same way, at most r(n − 1) directions in Tr span a hyperplane, therefore

m(Tr) = (r(n + 1) − r(n − 1)) − 1 = 2r − 1.

Note that m(T∗
r) does not depend on the dimension n.

Next, we characterize the partition of Rn induced by the knot planes in H (Tr). Since the knot planes
generated by T∗

r are those of Γ (Tr) under invertible linear transformation, the mesh inherits the topology
of the (n + 1)-directional mesh.

Lemma 6 (Partition by knot planes).
(i) There are n(n + 1)/2 non-parallel planes in H (Tr).

(ii) The knot planes in H (Tr) partition the unit cube into n! simplices (Figure 8)

σπ := conv(Vπ), Vπ := {0} ∪
n⋃

i=1

i∑

j=1

{iπ(j)}, π ∈ Sn (41)

where Sn be the set of all the permutations of {1, · · · , n}.
The partition {σπ}π∈Sn

is called Freudenthal triangulation [20] or Kuhn triangulation.

Proof. (i) There are n planes generated by the n unit vectors in In and
(

n
n−2

)
additional non-parallel planes

are spanned by the diagonal direction j and n − 2 additional unit vectors yielding a total of

n +

(
n

n − 2

)
= n +

1

2
n(n − 1) =

1

2
n(n + 1)

non-parallel planes in H (Tr).
(ii) Recall that T1 =

[
In −j

]
. All planes with normal direction ij − ik, j 6= k, intersect the interior of

and are generated by T1\ {ij , ik} i.e., as knot planes of M1 generated by n − 1 vectors including j. Unless
two vertices vj ,vk are both in Vπ for some permutation π, there exist indices α and β so that

vj(α) = 1,vk(α) = 0 and vj(β) = 0,vk(β) = 1

and hence the knot plane with normal iα − iβ separates them,

(iα − iβ) · vj = 1 > 0 and (iα − iβ) · vk = −1 < 0. (42)
17



(a) (b) (c)

Figure 9: (a) Rhombic dodecahedron: support of M∗
1 for n = 3 and A∗ = 1

2

[
1 −1 −1
−1 1 −1
−1 −1 1

]
. Figures (b)(c):

two decomposition of the support into parallelepipeds: (b) by (43) and (c) by (44).

Conversely, since knot planes excluding j are axis-aligned, neither they nor their shifts on Zn intersect the
interior of the unit cube . It remains to show that no shifts of the knot planes with normal iα − iβ separate
vertices of a simplex σπ for the same fixed permutation π. Since j · (iα − iβ) = j(α) − j(β) = 0, any
shifts by j ∈ Zn within the knot plane {x ∈ Rn : (iα − iβ) · x = 0} result in the same plane {x ∈ Rn :
(iα − iβ) · (x − j) = 0} and therefore we can assume that j · (iα − iβ) = j(α) − j(β) > 0. Then, for all
v ∈ {0, 1}n,

(iα − iβ) · (v − j) =





−j(α) + j(β) + 1 <= 0 v(α) = 1,v(β) = 0

−j(α) + j(β) − 1 < −1 v(α) = 0,v(β) = 1

−j(α) + j(β) < 0 v(α) = v(β)

≤ 0.

The case j · (iα − iβ) < 0 corresponds to a flipped normal and yields (iα − iβ) · (v − j) ≥ 0.

With the help of Lemma 6, we can establish the structure of suppM∗
r by first decomposing it into paral-

lelepipeds. There are two decompositions (see Figure 9).

Theorem 3 (support of M∗
1 ). The (closed) support of M∗

1 is the essentially disjoint union of the (n + 1)
parallelepipeds

{Z : Z ∈ B(T∗
1)} (43)

or, alternatively,
{Z +ζZ : Z ∈ B(T∗

1)} (44)

where ζZ := T∗
1\Z. In either decomposition, all the parallelepipeds are congruent.

Proof. Due to the relation (38), we need only consider M1. Let Zj ∈ B(T1) be a basis of T1 and

ζj := T1\Zj = −
∑

ξ∈Zj

ξ.

For αj := αZj
in (17), there are only two choices, αj ∈

{
0, ζj

}
, since for any ζ ∈ Zj , 2ζ does not fit into

T1 (cf. Figure 4, right):

∀ζ ∈ Zj , ζ + ζ ∈ Zj +ζ but ζ + ζ /∈ T1 .
18



Now assume
αj = 0 and αk = ζk for Zj ,Zk ∈ B(T1),Zj 6= Zk.

This leads to a contradiction as we prove that the two parallelepipeds Zj +αj and Zk +αk are not
essentially disjoint but rather share the point

p :=
1

2
ζk +

1

4

∑

ζ∈Zj∩Zk

ζ.

To verify that p is in the interior of both parallelepipeds, let ⊕ denote the disjoint union and observe that
Zj = (Zj\Zk) ⊕ (Zj ∩ Zk) and {ζk} = T1\Zk = Zj\Zk so that for αj = 0,

p =


1

2

∑

ζ∈Zj\Zk

ζ +
1

4

∑

ζ∈Zj∩Zk

ζ


+ αj .

That is, p ∈ Zj(0, 1)n + αj . (We use (0, 1)n rather than to show essential disjointedness).
But also p ∈ Zk(0, 1)n + αk since

p =
1

2
ζk +

1

4

∑

ζ∈Zj∩Zk

ζ +
1

2

∑

ζ∈T1

ζ (
∑

ζ∈T1
ζ = 0)

=
1

2
ζk +

1

4

∑

ζ∈Zj∩Zk

ζ +
1

2

∑

ζ∈Zk

ζ +
1

2
ζk

=


3

4

∑

ζ∈Zj∩Zk

ζ +
1

2

∑

ζ∈Zk\Zj

ζ


+ αk.

This establishes that there are only the two listed alternatives.

Next, we prove that all parallelepipeds are congruent. To analyze the decomposition

{Z∗ : Z∗ ∈ B(T∗
1)} (45)

we observe that

� the matrices Xα,Yα ∈ Rn×n

Xα(j, k) :=

{
1 k = α

0 otherwise
and Yα(j, k) :=

{
1 j = k = α

0 otherwise

satisfy the relations

XjJn = Jn, YjJn = Xt
j , XjX

t
j = Jn, XjYj = Xj , YjXj = Yj , X2

j = Xj

and that

� for Zj := In − Xj − Yj ,
Zj(In + Jn)Zt

j = In + Jn and Z2
j = In.

Then since A2 = In + Jn, for Z∗
j := A∗Zj and Z∗

k := A∗Zk,

Z∗
j = (A∗ZjZkA

∗−1)Z∗
k. (46)
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Secondly, we verify that

(A∗ZjZkA
∗−1)(A∗ZjZkA

∗−1)t = A∗ZjZkA
2Zt

kZ
t
jA

∗ (A∗−1 = A)

= A∗(In + Jn)A∗ (46)

= In.

For A∗Zj ,A
∗Zk ∈ B(T∗

1), A∗ZjZkA
∗−1 is therefore an orthonormal (rigid) transformation. And hence, by

(46), all the parallelepipeds Z∗ , for Z∗ ∈ B(T∗
1) are congruent. The other decomposition is verified in the

same way.

Lemma 3 is easily extended to T∗
r since

T∗
r = {

∑

ξ∈T∗

r

ξtξ : 0 ≤ tξ ≤ 1} = {
∑

ξ∈T∗

1

ξtξ : 0 ≤ tξ ≤ r} = T∗
1(r ).

For Z ∈ B(T∗
1), the pair (Z, ζZ) is a linear transformation of the pair (In,−j). Therefore Z is decomposed

in the same way as the unit cube is decomposed by the Kuhn triangulation and suppM∗
1 consists of n!

simplices. This count also agrees with the number of modular cells in the first neighbor polytope of A∗
n [21].

The two types of the decomposition of suppM∗
1 in Lemma 3 can be viewed as cubical meshes such that one

is the flip of the other [3] since each cubical mesh can be viewed as the projection of the (n+1)-dimensional
cube along one fixed diagonal in two opposite directions.

Next, we expand on Theorem 2(v), which showed that M∗
2 can reproduce all cubic polynomials. The

following lemma will simplify the proof.

Lemma 7. For an odd function f , µT2
f = 0.

Proof. By definition (22),

µT2
f =

∑

j

M2(−j)f(j)

=
∑

j

M2(j)f(j) (by Thm (2)(iii))

= −
∑

j

M2(j)f(−j) (f = −f(−·))

= −
∑

j

M2(−j)f(j). (change of index)

Comparing the first to the fourth line, we see µT2
f = 0.

Theorem 4 (Quasi-interpolant for M∗
2 ). The quasi-interpolant of M∗

2 , defined by the functional

λ∗
2 (f(· + j)) := λA∗

T2
(f(· + j)) :=


f − 1

12

∑

ξ∈T∗

1

D2
ξf


 (j), j ∈ A∗Zn (47)

provides the maximal approximation power m(T2) + 1 = 4.

Proof. We derive the quasi-interpolant QT2
for ST2

defined by λT2
(21). Then QA∗

T2
for SA∗

T2
defined by λ∗

2

can be derived by (28).

Specifically, we compute gα(0) for each degree |α|.
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1. |α| = 0

gα(0) = g0(0) = 1 By [13, page 68].

2. |α| = 1

By Lemma 7, µT2
[[]]

α
= 0 and

gα = [[]]
α −

∑

β 6=α

(
µT2

[[]]
α−β

)
gβ = [[]]

α −
(
µT2

[[]]
α)

g0 = [[]]
α

therefore gα(0) = 0.

3. |α| = 2

By [13, page 11],

M̂T2
(ω) := F {MT2

} (ω) =
∏

ξ∈T2

sinc(ξ · ω) =
∏

ξ∈T1

sinc2(ξ · ω).

Therefore, By (23), for j 6= k,

(
DjDk

1

M̂T2

)
(ω)

=


 ∏

ξ∈T1\{j,ij ,ik}

1

sinc2(ξ · ω)


DjDk

1

sinc2(j · ω)sinc2(ωj)sinc2(ωk)

Since sinc(0) = 1, with the help of MAPLE, we can compute

(
DjDk

1

M̂T2

)
(0) =

(
DjDk

1

sinc2(ωj)sinc2(ωj)sinc2(ωj + ωk)

)
(0) =

1

6
.

Also, (
D2

j

1

M̂T2

)
(ω) =


 ∏

ξ∈T1\{j,ij}

1

sinc2(ξ · ω)


D2

j

1

sinc2(j · ω)sinc2(ωj)
.

Again, with the help of MAPLE, we can compute

(
D2

j

1

M̂T2

)
(0) =

(
D2

j

1

sinc4(ωj)

)
(0) =

1

3
.

By (23), for j 6= k,

gij+ik(0) =

(
[[ − iD]]

ij+ik 1

M̂T2

)
(0) =

(
−DjDk

1

M̂T2

)
(0) = −1

6

and

g2ij (0) =

(
[[ − iD]]

2ij 1

M̂T2

)
(0) =

(
−1

2
D2

j

1

M̂T2

)
(0) = −1

6
.
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4. |α| = 3

By [13, (III.19)],

gα = [[]]
α −

∑

β 6=α

(
µT2

[[]]
α−β

)
gβ

= [[]]
α −


(µT2

[[]]
α)

g0 +
∑

|β|=1

(
µT2

[[]]
α−β

)
gβ +

∑

|β|=2

(
µT2

[[]]
α−β

)
gβ




= [[]]
α

hence gα(0) = 0 because

� µT2
[[]]

α
= 0 by Lemma 7,

� gβ = 0 for |β| = 1 and

� µT2
[[]]

α−β
= 0 for |β| = 2 hence |α − β| = 1 by Lemma 7.

Summing up,

λT2
f =

∑

|α|≤m(T2)

gα(0) (Dαf) (0)

= f(0) − 1

6

∑

|α|=2

(Dαf)(0)

= f(0) − 1

12

(
n∑

k=1

(D2
kf)(0) + ((

n∑

k=1

Dk)2f)(0)

)

= f(0) − 1

12

∑

ξ∈T1

(D2
ξf)(0). (48)

Now, by (29),

λ∗
2f = f(0) − 1

12

∑

ξ∈T∗

1

(D2
ξf)(0).

For discrete input f : A∗Zn → R, we approximate the directional derivative along ζ ∈ Rn by finite differences,
e.g.,

D2
ζf ≈ f(· + ζ) + f(· − ζ) − 2f. (49)

Therefore

λ∗
2f ≈ f(0) − 1

12

∑

ξ∈T∗

1

(f(ξ) + f(−ξ) − 2f(0))

=

(
1 +

n + 1

6

)
f(0) − 1

12

∑

ξ∈T∗

1

(f(ξ) + f(−ξ)) . (50)

When specialized to two variables, this agrees with Levin’s formula [27].
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7. Conclusion

We introduced a non-standard representation A∗Zn of the efficient reconstruction lattice A∗
n that is based on

a new family of square generator matrices A∗. In this representation, A∗
n naturally admits a symmetric box-

spline family M∗
r . We then documented, in any number of variables n, the support, the induced partition

of Rn and the desirable properties shared with the well-known box-spline family Mr. For the important
case r = 2 that provides a smooth field of low degree, we derived in any number of variables an optimal
quasi-interpolant construction for M∗

2 .
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