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Banff rocks!



Overview

>

Cowork with Jérg Peters & Alireza Entezari

Based on the sphere packing problem and sphere covering
problem, root lattices are proposed as efficient sampling
lattices in arbitrary dimensions.

Symmetric box-spline filters are constructed for n-dimensional
irreducible root lattices, leveraging the symmetric structure of
each lattice. (Z", A,, A}, Dy, D)

Detailed properties of each box-spline and its spline space are

investigated.

Applications in volume reconstruction are presented.

Minho Kim and J6rg Peters, Symmetric Box-Splines on Root Lat-
tices, Journal of Computational and Applied Mathematics (accepted)




Densest Sphere Packing Problem
“How can we arrange non-overlapping identical spheres in the
n-dimensional Euclidean space maximizing the volume proportion
occupied by the spheres?”
» Regular(lattice)/irregular arrangement
» Densest regular packings are known up to dimension 8.

(Courtesy of mathscareers.org.uk) (Courtesy of old-picture.com)



Densest Regular Packing and Optimal Sampling Lattices
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» To find the lattice with maximum density A:

A = proportion of the space occupied by the spheres

volume of the inscribed sphere

volume of the Voronoi cell
» We want the inradius of the Voronoi cells as /arge as possible.

The optimal sampling lattice is the dual of the densest sphere packing
lattice (Peteresen and Middleton '62). J




Thinnest Sphere Covering
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» To find the lattice with minimum thickness ©:

© = average # of spheres that contain a point in the space

volume of the circumsphere

volume of the Voronoi cell

» We want the circumradius of the Voronoi cells as small as
possible.



» For dense regular packing or thin regular covering, high
symmetry at every lattice point is required.
— Root lattices



Lattices

» Discrete subgroup of maximal rank in a Euclidean vector space.
» Can be generated by a square generator matrix L.

» Dual lattice can be generated by L.
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2-Dimensional Example of Finite Reflection Group

» Why ‘reflections’?
— Reflections generate all the rigid transformations.

RiRox Riz_ 1,
R2R1R2w = Rleleo\ /0113
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Finite Reflection Groups

“Which configurations of mirrors result in finite reflection groups in
n-dimensional Euclidean space?”

» Answered by H.S.M. Coxeter (1907-2003).
» For n = 2, dihedral angles 7/k, k > 2 and k € Z, are allowed.
» For n > 2, only finite reflection groups exist.

> . Invariant under the orthogonal transformations
generated by reflections.



Root Systems
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» Fundamental roots

> A finite reflection group can be re-formulated by a root system
and studied via linear algebra.



Root Lattices

» Not all root systems generate lattices!
(Should be shift-invariant.)

» Crystallographic restriction: Dihedral angles are limited to
w/k, k €{2,3,4,6} °c e
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> : Root lattices have the same symmetry as the

finite reflection group at every lattice point.



Packing Densities of Some Root Lattices (Conway & Sloane)
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» Known to be optimal (among lattices) up to dimension 8:
7 ~ .Al, .Az, .A3 ~ Da, D4, D5, 86, 87, and 58

» Cartesian lattices are not efficient sampling lattices.



Covering Thickness (©) of Some Root Lattices (Conway &
Sloane)
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» Known to be optimal (among lattices) up to dimension 5:

7, Ay, A%, A% and Al

» Again, Cartesian lattices are not efficient sampling lattices.



» Root lattices are good candidates for efficient sampling in
arbitrary dimensions.

» Cartesian lattices are less efficient sampling than other root
lattices.

» Which (symmetric) reconstruction filter can we use?
— Box-splines



Box-Splines: Definition
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Box-Splines: Properties

v

Finite support defined by Minkowski sum of the directions.

v

Piecewise polynomial of degree m — n

v

Polynomial pieces are delineated by the shifts of the knot
planes (Hyperplanes spanned by the directions of =).

v

Carl De Boor, Klaus Héllig, S. D. Riemenschneider
“Box Splines” (1993)



Spline

» A linear combination of the shifts of the box-spline:
s € Sg := span(Mz(- — j))jezr-
» {M=(- — j)}jcz» form a basis iff = is unimodular.

» Approximation order (when E € Z™*™)
p(E) := {minzcz #Z : rank(E\Z) < n}
» Spline evaluation at .

s(z) = Mz(z - j)a(j)
=M=(z —j)a(j:) %
+M=(z — j,)a(iz)
+M=(z — j3)a(ds)
+M=(r — j.)a(is) T
(75)
(J6)
()

+M=(x—7j:)a
+M=(z — jg)a(is
+M=(x - )a I35

» Large support — More samples for evaluation



Box-Splines on Non-Cartesian Lattices

JELZ™ kezm

> |det L[ Mp=(- - jla(i) = > M=(L~'- —k)a(Lk) J

» A spline as a linear combination of the shifts of the box-spline
| det | M1,= on the non-Cartesian lattice 2" has a change of
variables relation with the spline as a linear combination of the
shifts of the box-spline M= on the Cartesian lattice.



Constructing Symmetric Box-Splines on Root Lattices

» To maximize the approximation order, directions associated
with the lattice points are used. This also guarantees rational
polynomial coefficients. (Kim & Peters '09)

» To make the box-spline has the same symmetry as the lattice,
all the (non-parallel) lattice points with the same distances are
included.

» To make the support of the box-spline small, consider the
short directions first.



Symmetric Box-Spline on the Cartesian Lattice

dm. boxspline Tattice irection matrix Eenerator matrix Continuty basis? PN
w1 )
n My Cartasian TnUfen + ) +e} In o no not known
=
- 101 -1 . 1
2 My ZP-element [D 11 c! no 7] H(;:ﬂng/)(,)
1001 1 o1 1 A
2 2
3 My o101 1 1 1 [z no [C Z DEf)(5)
vo11 1 1 1 =
n An {Xi(ei—e;)} AL o yes not known
cisinis
2 14V3 143 1EVE 1£V3 o .
2 heagonal 31 _1LV3 1443 15V 1£V3 < ves 10
110 0 -1 -1 01 1] N
3 My =Me=Mp FCC -1 0 -1 1 0 -1 101 ot yes (F-5 X DENG)
0 -1 -1 -1 -1 0 110] P
no MG =M 4 AF[n ] Az o ves 16)
n M A Ay [ L, —j ] At -2 yes not known
= . o o N N . 1
n M A AF [ o L] Azt c yes (-5 X D)
€ETy
1 [12v3 1%V 2 .
2 ;ﬁ[n;ﬁ 143 2 e yes 16)
AR
3 I oo yes 1G)
[ 1 112
Toi o oens (=3 [y (n=3)
n M D e: tej) 2 not known
> ,,;\U,vn{ 4 [ it ] ™ (n>3) o (n>3)
11110 e 100 N
> . . :
3 Mo, = My, FCC Lot - cf ¥es U g X DiNG)
=
. = T2 -
n Mp; 23 l.,.uf(»,ﬁ»X;ie,} [ - ‘//2] c7 no not known
NEEIEE 10 12 N
3 My BCC -[0201 1 -1 -1 0112 c? no (F=-g; X DENG)
Zloo21 1 o1 1 00 12 L=



Symmetric Box-Spline on the Cartesian Lattice

» The Cartesian lattice Z™

» Generated by the root system
B ={te;tej : 1<1#7<npUlU ccnfes}
» Symmetry order: 2"n!
» Center density: 27"
» (Symmetric) tensor-product B-spline
» Constructed by the n shortest (axis-aligned) directions,
repeated 7 times each.

» High degree (rn) compared to its approximation order (r — 1).
» Too large support — High computationl cost

» The symmetric box-spline Mz~

» Constructed by n axis-aligned directions + 2"~ ! diagonal
directions
— Extension of ZP-element (Zwart '73) and 7-direction
box-spline (Peters '96)

» Polynomial degree: 271

» Approximation order: 2772 4 2

» Shifts do not form a basis.



Box-Spline M7z on the Cartesian Lattice

v

Direction matri Lot
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v

Centered ZP-element (Zwart '73).

v

Piecewise polynomial of degree 2.
» C? continuous & approximation order 3

Stencil size is 7.
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Box-Spline M7z on the Cartesian Lattice
1 -1 1 -1
» Direction matrix 1 1 -1 -1
1 1 1 1
Centered 7-direction box-spline (Peters '96).
Piecewise polynomial of degree 4.
C? continuous & approximation order 4
Stencil size is 53.
cf. 64 for B-spline with the same approximation order

N
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Symmetric Box-Spline on the A, Lattice

am boxspiine Tattice drection matr Eenerator matrx Continuity Basis? PN )]
w1 N
n My Cartasian TnUfen + ) +e} In o no not known
=
- 101 1 N 1 "
2 My ~ZP-clement [D i c no « H(gﬂnd)(,)
1oo1 1 o1 1 |
2 2
3 My o101 1 1 1 [z no [C Z DEf)(5)
0011 111 =
" An {XSlei—ei)} A cn? yes not known
sicinst
2 1:v3 123 143 14v3 o i
2 heagonal 31 _1LV3 1443 15V 1£V3 < ves 10
11 0 0 -1 -1 01 l“ N
3 My, = M = Mp, FCC -1 0 -1 1 0 -1 101 ct yes. (-5 3 D)
0 -1 -1 -1 -1 0 110] =
no MG =M 4 AF[n ] Az o ves 16)
n M A Ay [ L, —j ] At o= yes not known
" . L . . 1
n Mz A O A A A c yes (-5 X DiNG)
ey
L [1£v3 1543 2 o
2 ;ﬁ[n;ﬁ 143 2 e yes 16)
A
3 i1 o yes 1G)
[+ 11
T e c =3 [vs (n=3)
n 72 Da o; 05 ; not known
> ,,;\U,vn{ 4 [ it ] {CZH >3 lmo (n>3)
111 o100 1o N
o n . 2
3 Mo My Fec oo oo c yes U T PHIG)
=
. k= Ly if2 -
n Mp; 23 l.,.uf(»,ﬁ»X;ie,} [ - ‘//2] c7 no not known
JJzoot o1 1012 |
3 My BCC -[0201 1 -1 -1 0112 c? no (F=-g; X DENG)
Zloo21 1 o1 1 00 12 L=



Symmetric Box-Spline on the A, Lattice

» The A, lattice
» Generated by the root system
A= {t(e; —e;)E R 1< i£7<n+1}
Generated by the vectors associated with the n edges of a
regular n-simplex sharing a vertex.
Symmetry order: (n + 1)!2
Center density: 27/2(n 4 1)~1/2
Examples: hexagonal, FCC

v

v

v
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» The symmetric box-spline Mjn
» Constructed by the shortest (non-parallel) n(n + 1)/2
directions.
» Polynomial degree: n(n —1)/2
» Approximation order: n
» The shifts form a basis.



Embedding the A, Lattice in R”

» Diagonally scale the n-simplex composed of

03U | {ej}

1<j<n

such that it becomes regular.

—» A =T, +1(-1+ «/n+ Jn
— Square generator matrices of the A, lattice
(Kim & Peters '10)



Box-Spline sz on the Hexagonal Lattice

» Generator matrix E 1£v3 —1£V3
2| -1£v3 1+V3 [
» Direction matrix 11 2 1++/3 —1++3
2| 2 -1+v3 1++3

» Bivariate linear box-spline on the hexagonal lattice.

|
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Box-Spline My, on the FCC Lattice

» Generator matrix

= = O
= O
O = =

1 1 0 0 -1 -1

» Direction matrix | —1 0 -1 1 0 -1
O -1 -1 -1 -1 0

» Six-direction box-spline on the FCC lattice (Entezari '07).

* O



Reconstruction on the FCC Lattice

» Performance

Dataset Cartesian FCC Ratio
Marschner-Lobb 135 08 72%
Carp 515 358  69%

Minho Kim, Alireza Entezari and Jérg Peters, Box-Spline Reconstruc-
tion on the Face Centered Cubic lattice, IEEE Visualization 2008.




Symmetric Box-Spline on the A Lattice

dm. boxspline Tattice irection matrix Eenerator matrix Continuty basis? PN
a1 )
n My Cartasian TnUfen + ) +e} In o no not known
=
. 101 -1 . 1 .
2 My ZP-element [D 11 c! no 7] H(EZE:"D{/)(,)
1001 1 o1 1 A
2
3 My o101 1 1 1 c? no [C Z DEf)(5)
vo11 1 1 1 =
" An {XSlei—ei)} A% cn? yes not known
siciznst
2 1%V 1£v3 1EVE 1£V3 o .
2 heagonal 31 _1LV3 1443 15V 1£V3 < ves 10
110 0 -1 -1 01 1] N
3 My, = M = Mp, FCC -1 0 -1 1 0 -1 101 ct yes. (-5 3 D)
0 -1 -1 -1 -1 0 110] P
M =Mt A AF (L] Azt c® yes 1G)
P A AU -] Azt o yes not known
= . o o N N . 1
Mz A, AF [ o L] Az c yes (-5 X DiNG)
€ETy
1 [1£V3 153 2 .
;ﬁ[n;ﬁ 143 2 e yes 16)
[-r 1 1o
1 o
I c yes 1G)
[1 114
i oent ' (n=3) [ys (n=3)
n M D e: tej) " not known
> mu,vn{ 4 F ] {ch*‘ >3 lmo (n>3)
111 10 0 100 .
=k . . :
3 Mo, = M, Fec 110 01 1 011 c ye (g X DING)
0 01 o111 111 =
. = In i —
n Mp; 23 l.,.uf(»,ﬁ»X;ie,} [ - ‘//2] c7 no not known
NEEIEE 10 12 N
3 My BCC -[0201 1 -1 -1 0112 c? no (F=-g; X DENG)
2loo21 1 “EEE.“



Symmetric Box-Spline on the A Lattice

» The A} lattice
» The dual lattice of the A,, lattice
» Generated by the vectors from the center of a regular
n-simplex to its vertices.
» Symmetry order: (n + 1)!2
. n/
Center denSIty: W
Examples: hexagonal, BCC

v

v

» The symmetric box-spline Mi;

Constructed by the (n + 1) shortest directions.

Polynomial degree: 1

Approximation order: 2

The shifts form a basis.

Examples: 4- and 8-direction box-splines on the BCC lattice
(Entezari et al.)
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Embedding the A} Lattice in R"

» Diagonally scale the n-simplex composed of
{=iru U {e}
1<j<n

such that it becomes regular.

/!
*+ . 1
- A _I T ( n+1> n
— Square generator matrices of the A}, lattice
(Kim & Peters '10)




Symmetric Linear Box-Spline on the A7 Lattice

» Analogous to the shadow projection of a slab along diagonal.

Minho Kim, Jorg Peters, Symmetric Box-Splines on the A}, Lattice
Journal of Approximation Theory 2010. J




Symmetric Box-Spline on the D,, Lattice

am boxspiine Tattice drection matr Eenerator matrx Continuity Basis? PN )]
w1 N
n My Cartasian TnUfen + ) +e} In o no not known
=
- 101 1 N 1 "
2 My ~ZP-clement [D i c no « H(gﬂnd)(,)
1oo1 1 o1 1 |
2 2
3 My o101 1 1 1 [z no [C Z DEf)(5)
0011 111 =
" An {XSlei—ei)} A cn? yes not known
sicinst
2 1:v3 123 143 14v3 o i
2 heagonal 31 _1LV3 1443 15V 1£V3 < ves 10
11 0 0 -1 -1 01 l“ N
3 My, = M = Mp, FCC -1 0 -1 1 0 -1 101 ct yes. (-5 3 D)
0 -1 -1 -1 -1 0 110] =
no MG =M 4 AF[n ] Az o ves 16)
n M A Ay [ L, —j ] At o= yes not known
" . L . . 1
n Mz A O A A A c yes (-5 X DiNG)
ey
L [1£v3 1543 2 o
2 ;ﬁ[n;ﬁ 143 2 e yes 16)
A
3 i1 o yes 1G)
[+ 11
T e c =3 [vs (n=3)
n 72 Da o; 05 ; not known
> ,,;\U,vn{ 4 [ it ] {CZH >3 lmo (n>3)
111 o100 1o N
o n . 2
3 Mo My Fec oo oo c yes U T PHIG)
=
. k= Ly if2 -
n Mp; 23 l.,.uf(»,ﬁ»X;ie,} [ - ‘//2] c7 no not known
JJzoot o1 1012 |
3 My BCC -[0201 1 -1 -1 0112 c? no (F=-g; X DENG)
Zloo21 1 o1 1 00 12 L=



Symmetric Box-Spline on the D,, Lattice

» The D, lattice

» Ak.a. “checkerboard lattice” {j € Z™ : >, j(k) is even}
» Generated by the root system %, or 2,
» Defined only forn >3

2"n! 4
» Symmetry order: nt(n#4)

1152 (n=4)
» Center density: 2(7+2)/2

v

Example: FCC
» The symmetric box-spline Mp,,

» Constructed by the n(n — 1) shortest directions
Polynomial degree: n(n — 2)
Approximation order: 2n — 2
The shifts do not form a basis except for n = 3.
Example: 6-direction box-splines on the FCC lattice

vV vy vy



Symmetric Box-Spline on the D}, Lattice

dm. boxspine Tattice irection matrix Eenerator matrix Continuty basis? PN
a1 )
n My Cartasian TnUfen + ) +e} In o no not known
=
. 101 -1 . 1 .
2 My ZP-element [D 11 c! no 7] H(EZE:"D{/)(,)
1001 1 o1 1 A
2 2
3 My o101 1 1 1 [z no [C Z DEf)(5)
vo11 1 1 1 =
n An {Xi(ei—e;)} AL o yes not known
cisinis
2 14V3 143 1EVE 1£V3 o .
2 heagonal 31 _1LV3 1443 15V 1£V3 < ves 10
110 0 -1 -1 01 1] N
3 My =Me=Mp FCC -1 0 -1 1 0 -1 101 ot yes (F-5 X DENG)
0 -1 -1 -1 -1 0 110] P
no MG =M 4 AF[n ] Az o ves 16)
n M A Ay [ L, —j ] At o= yes not known
= . o o N N . 1
n Mz A, AF [ o L] Az c yes (-5 X DiNG)
€ETy
1 [1£v3 1543 2 o
2 ;ﬁ[n;ﬁ 143 2 e yes 16)
AR
3 I oo yes 1G)
[ 1 112
Ti oea: ¢ (=3 [y (=3
n M D e: tej) z not known
> ,,;\U,vn{ 4 [ it ] {CZH >3 lmo (n>3)
11110 e 100 N
> . . :
3 Mo, = My, FCC Lot - cf ¥es U g X DiNG)
=
. = In i —
n Mp; 23 l.,.uf(e,.i»;ie,} [ - ‘//2] c7 no not known
NEEIEE 10 12 N
3 My BCC -[0201 1 -1 -1 0112 c? no (F=-g; X DENG)
2loo21 1 “EEE.“




Symmetric Box-Spline on the D}, Lattice

» The Dj, lattice
» The dual lattice of the D,, lattice
» Generated by inserting additional points at the center of the
cubes embedded in Z™. — “Body-centered cubic lattice”
» Symmetric order: same as that of the D,, lattice
1.55—5 _
» Center density: {3 2 (n=3)
2—(n—1) (n > 3)
» Example: BCC
» The symmetric box-spline Mpx
» Polynomial degree: 271
» Approximation order: 2772 4 2
» The shifts do not form a basis.



Box-Spline Mp; on the BCC Lattice

1 1 -1 1 -1
» Direction matrix — 1 1 -1 -1
2 1 1 1 1
1 -1 1 1
» Generator matrix — 1 -1
2 1 1 -



Mp; vs. 8-Direction Box-Spline (Entezari et al. '04)

box-spline 8-dir. Mp:
polynomial degree 5 4
approximation order 3 3

# of pieces 192 720

stencil size 32 30

basis? yes no




Mp; vs. 8-Direction Box-Spline (Entezari et al. '04)




Wrap-Up

» Root lattices = Good!
» Box-splines = Good!

» Box-splines on root lattices = Awesome!!!

WANTED: Applications in high dimensions




Questions?
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