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Abstract—We introduce and analyze an efficient reconstruction algorithm for FCC-sampled data. The reconstruction is based on
the 6-direction box spline that is naturally associated with the FCC lattice and shares the continuity and approximation order of the
triquadratic B-spline. We observe less aliasing for generic level sets and derive special techniques to attain the higher evaluation
efficiency promised by the lower degree and smaller stencil-size of the C1 6-direction box spline over the triquadratic B-spline.

Index Terms—Volumetric data reconstruction, box spline, Face-Centered Cubic lattice

1 MOTIVATION

Sampling and reconstruction of trivariate functions is a key task for
visualization of volumetric data. The Cartesian lattice is the accepted
discretization pattern for sampling since its separable structure allows
for an easy (i.e., tensor-product) extension of univariate techniques
to the trivariate setting. However, the Cartesian lattice is suboptimal
when sampling typical data sets. The Body Centered Cubic (BCC) lat-
tice and the Face-Centered Cubic (FCC) lattice outperform the Carte-
sian lattice both in terms of reducing aliasing and by lower density of
samples required for reconstruction.

Although the BCC lattice is the optimal 3D sampling lattice [26], the
FCC lattice also shows nearly-optimal sampling properties. In addi-
tion the FCC lattice enjoys from a uniform notion of voxel neighbor-
hood (i.e., discrete topology) [10]. This feature is crucial in defin-
ing morphological operators in mathematical morphology [22] and
has recently proven useful for computing volumetric global illumi-
nation [28]. The FCC lattice is often regarded as the 3D counterpart
of the quincunx lattice in 2D– both of which allow for subsampling of
Cartesian data by a ratio of 2 [32]. This close relationship to the Carte-
sian lattice allows for developing granular multiresolution transforms
studied in [19, 12]. In the information theory literature, the FCC lattice
is proven to be the lattice of choice for sampling signals at low relative
resolutions [18]. Kovac̆ević [17] and Cooklev [4] proposed sampling
video signals on the FCC lattice.

Yet, to date, there is no reconstruction algorithm available that can
efficiently interpolate or approximate the underlying function based
on the FCC samples.

The contribution of this paper is to fill in the nontrivial technical details
that turn the theoretical advantages of the FCC lattice into practically
useful algorithms; and to provide the first efficient reconstruction al-
gorithm for data on the FCC lattice. In particular, we

• characterize the continuity and approximation properties of M6,
the C1 6-direction box spline naturally fitting to the FCC lattice
structure (Lemma 1, page 3) ;

• derive an optimal quasi-interpolant for M6 to efficiently recon-
struct a field corresponding to FCC data (Lemma 2, page 3) ;

• derive an explicit representation of M6 in Bernstein-Bézier (BB)
form ( Table 1 page 4) and

• give an efficient algorithm for the evaluation of splines that are
generated from shifts of M6 (Algorithm 2, page 5).

We implemented this reconstruction algorithm and compared it to the
triquadratic B-spline reconstruction of the Cartesian data. This is a fair
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comparison since both reconstruction schemes are of equivalent ap-
proximation order and continuity (Section 6). By contrast, the known
BCC reconstruction filters do not have the same continuity and approx-
imation order as our proposed FCC reconstruction: the well-known
BCC reconstruction algorithms are C0, and C2; we provide C2 re-
constructions of BCC datasets for rough comparisons.

2 RELATED WORK

While there is a rich literature on univariate reconstruction
schemes (e.g., [25, 9, 2, 16, 23, 24]) and tensor-product or a radial
extension of univariate reconstruction schemes [21], only limited re-
search has addressed more isotropic multi-dimensional sampling and
reconstruction. Based on the arguments of Petersen and Middle-
ton [26], Theußl et al. [30, 29] were first to consider the BCC lat-
tice. However, their spherical extension of reconstruction filters does
not take advantage of the underlying geometry and therefore blurs the
data. Carr et al. [3] studied isosurface extraction on the BCC lattice
and Csébfalvi [5] demonstrated a reconstruction using a Gaussian ker-
nel and the principle of generalized interpolation [31]. While the latter
approach is isotropic, it does not guarantee best approximation order
and results in a numerical scheme without closed form reconstruction
kernel. Entezari et al. [11] established the relationship between the
BCC lattice and an isotropic four-direction trivariate box spline. Us-
ing this box spline, they demonstrated that the theoretical advantages
of the BCC lattice can carry over to practice in the form of efficient
algorithms for C0 and C2 reconstruction. Based on the piecewise-
polynomial form of the proposed box splines the cost of reconstruc-
tion on the BCC lattice was shown to be half that of the corresponding
tensor-product B-spline reconstruction on a comparable Cartesian lat-
tice [13].

3 BOX SPLINE BASICS

Before we introduce the FCC-based box spline, we review the basic
concepts of box splines that needed to explain the properties of the
FCC-based reconstruction. We follow the notation made standard by
the ‘box spline book’ [8] and point to this excellent source for a deeper
and more detailed treatment.

Box spline The box spline MΞ : R
n → R is defined by a matrix

Ξ ∈ R
n×ℓ, n ≤ ℓ, whose columns, called directions, span R

n. It
is constructed by consecutive directional convolutions along the direc-
tions in Ξ. Alternatively, each value of MΞ is defined as the projected
volume density of the ℓ-dimensional cube (Figure 1).

MΞ is zero outside {Ξt : t ∈ [0..1]ℓ}, the Minkowski set of the
directions in Ξ. Let H(Ξ) be the set of (n − 1)-dimensional planes
spanned by the directions of Ξ. Then MΞ consists of polynomial
pieces of (total) degree ℓ − n that are delineated by the mesh Γ(Ξ)
obtained by shifting H(Ξ) on the integer grid Z

n

Γ(Ξ) :=
[

H∈H(Ξ)

H + Z
n
. (1)
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Fig. 1: Quadratic B-spline coincides with (a) box spline M[1 1 1] de-
fined as a projection of (b) a three-dimensional cube.

Spline Space The shifts of MΞ on Z
n form the spline space

SMΞ
:= span (MΞ(· − j))

j∈Zn . (2)

If m(Ξ)+1 is the minimal number of directions whose removal from
Ξ makes the remaining directions do not span R

n, then all polyno-
mials up to degree m(Ξ) are contained in SMΞ

[8, (II.59)] and the
continuity is at least

s ∈ C
m(Ξ)−1(Rn), ∀s ∈ SMΞ

.

The sequence (MΞ(· − j))
j∈Zn is linearly independent if and only if

Ξ is unimodular [8, (II.57)], i.e., all square sub-matrices of Ξ satisfy

detZ ∈ {0,±1}, ∀Z ∈ Ξ. (3)

Quasi-interpolation In image and signal processing literature,
the data are often used as the coefficients of the basis splines (i.e.,
B-spline or box spline ). Such reconstruction, therefore, only approx-
imates when the basis functions are of higher degree than linear. The
‘pre-filtering’ technique modifies the data so that using them as co-
efficients yields interpolating or optimally approximating splines.
Different spline bases require different pre-filtering rules.

In image processing it is common to design pre-filters to optimally
approximate ideal interpolation (i.e., sinc based interpolation) [31].
In approximation theory, the corresponding concept is called quasi-
interpolation. Quasi-interpolation converts the original data to spline
control points so that, if the data are sampled from low-order polyno-
mials, the reconstruction reproduces the polynomials exactly. Repro-
ducing as many low-order polynomials as the basis spline allows often
guarantees the optimal approximation order of the reconstruction al-
gorithm [8].

For the box spline associated with Ξ, the polynomials up to degree
m(Ξ) are reproduced by the quasi-interpolant of the form

(QMΞ
f)(x) :=

X

j∈Zn

MΞ(x − j)λMΞ
(f(·+ j)) (4)

with the functional λMΞ
f defined in [8, (III.22)] and explicitly stated

in all cases, below. While QMΞ
provides the optimal approximation

order m(Ξ) + 1 from SMΞ
, computing it is efficient since λMΞ

aver-
ages only local data at each lattice point (see e.g. (9) and (13)).

Change of Variables Under an invertible linear map L, [8,
(I.23)]

MΞ = | det L|MLΞ ◦ L. (5)

In particular, any sum of shifts, by j ∈ LZ
n (on the possibly non-

Cartesian lattice), of the box spline | det L|MLΞ weighted by coeffi-
cients a(j) ∈ R can be expressed as a weighted sum of the shifts of
MΞ on the Cartesian lattice Z

n:

X

j∈LZn

| det L|MLΞ(·− j)a(j) =
X

k∈Zn

MΞ(L−1 ·−k)a(Lk). (6)

The quasi-interpolant QL
MΞ

for the spline space

S
L
MΞ

:= span (| det L|MLΞ(· − j))
j∈LZn

that provides the same approximation order as does QMΞ
for SMΞ

is
defined by the functional

λ
L
MΞ

(f(·+ j)) := λMΞ

`
(f ◦ L)(·+ L

−1
j)

´
. (7)

3.1 The triquadratic B-spline on the Cartesian lattice

We will compare FCC reconstruction to tensor-product B-spline re-
construction. With I the 3×3 identity matrix, the triquadratic B-spline
has the centered box spline representation

M333 := MΞ333
(·+ (1.5, 1.5, 1.5)), Ξ333 :=

ˆ
I I I

˜
.

Since up to six directions of Ξ333 lie in a plane, m(Ξ333) = (9−6)−
1 = 2. Therefore all quadratics are contained in

S333 := span (M333(· − j))
j∈Z3 (8)

and all the splines in S333 are C1. The total degree of the polyno-
mial pieces is 9 − 3 = 6. The quasi-interpolant Q333 with optimal
approximation order for S333 is defined by the functional

λ333f := f(0)−
1

8

`
(D2

1 + D
2
2 + D

2
3)f

´
(0).

For a discrete input f : Z
3 → R, approximating D2 with central

differencing yields

λ333f ≈
7

4
f(0)−

1

8

3X

k=1

(f(ik) + f(−ik)). (9)

De Boor’s algorithm [7] is the standard stable evaluation method for
splines in S333.

4 SPLINES ON THE FCC LATTICE

In this section, we introduce splines suitable for C1 reconstruction
on the FCC lattice. We start with a more detailed description of the
geometry of the lattice to paint a broad picture.

4.1 The geometry of the FCC lattice

The FCC lattice consists of all Cartesian lattice points whose coordi-
nates sum to an even number;

GZ
3
, G :=

2
4

0 1 1
1 0 1
1 1 0

3
5 .

G is called generator matrix of the FCC lattice.

The Voronoi cell of any FCC lattice point is a rhombic dodecahedron
(see Figure 2a). In order to perform nearest neighbor interpolation,
one can use the structure of this polyhedron and quickly find the near-
est FCC point to an arbitrary point x ∈ R

3. Algorithm 1 explains
an efficient method to determine the nearest FCC lattice point. If the
sum of coordinates of the nearest Cartesian lattice point j, obtained by
rounding x, is even then j is on the FCC lattice (Figure 3a). Other-
wise, we determine which of 6 Voronoi cell j belongs to (Figure 3b).
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Fig. 2: (a) Rhombic dodecahedron; the Voronoi cell of the FCC lattice.
(b) Truncated Octahedron; the support of M6.

(a) j ∈ GZ
3 (b) j /∈ GZ

3

Fig. 3: (a) Region where mapping to the nearest Cartesian lattice point
(green) yields the nearest FCC lattice point (red); (b) Region requiring
further work (Algorithm 1).

As illustrated in Figure 5a, there are 12 FCC neighbors located at
(0,±1,±1), (±1, 0,±1) and (±1,±1, 0). This neighborhood forms
a cuboctahedron (and can be used to construct a linear element [27]
on the FCC lattice). To obtain a smoother construction, we expand
this neighborhood to include 6 additional FCC samples at offsets
(±2, 0, 0), (0,±2, 0) and (0, 0,±2). This yields the truncated oc-
tahedron (Figure 2b) associated with the 19-point neighborhood on
the FCC lattice

{k ∈ GZ
3 : ‖k − j‖2 ≤ 2}.

Since all faces of the truncated octahedron exhibit point symmetry, it
is a zonohedron with 6 zones. This relationship allows for a natural
construction of a box spline, whose support is a truncated octahedron,
by projecting a six-dimensional hypercube.

4.2 A Six-Direction C1 Box Spline on the FCC lattice

A box spline corresponding to the projection of the six-dimensional
hypercube is introduced in [10] for the FCC lattice. This box spline is
represented by the direction vectors of the 6 zones:

Ξ6 := [ξ1, . . . , ξ6] :=

2
4

1 −1 1 1 0 0
1 1 0 0 1 −1
0 0 1 −1 1 1

3
5 . (10)

Algorithm 1 Finding the nearest FCC lattice point from x ∈ R
3

j ←Nearest Cartesian lattice point from x
if j is not an FCC lattice point then

ex← x − j
k ← index of max{|ex(1)|, |ex(2)|, |ex(3)|}
j(k)← j(k) + sign(ex(k))

end if
return j

Since the theory recorded in [8] is formulated for a box spline shifted
on the Cartesian lattice, we consider

where

eΞ6 :=
h
ξ̃1, . . . , ξ̃6

i
:= G

−1
Ξ6 =

2
4

0 1 0 −1 1 0
0 −1 1 0 0 1
1 0 0 1 0 −1

3
5 .

Then, by (5),

MΞ6
:=

1

| detG|
MeΞ6

◦G−1

is a trivariate box spline on the FCC lattice. Since MΞ6
is normalized

according to the Cartesian lattice rather than the FCC lattice, we re-
normalize it and center it to obtain the box spline

M6 := | detG|MΞ6
(·+ (1, 1, 1))

to be used as the reconstruction filter on the FCC lattice. The spline
based on the FCC shifts of M6 can therefore (see (6)) be represented
on Z

3 in terms of Me6 := MeΞ6
(·+ ( 1

2
, 1

2
, 1

2
)) as

X

j∈GZ3

M6(· − j)a(j) =
X

k∈Z3

Me6(G
−1 · −k)a(Gk).

Lemma 1 (spline space). The box spline M6 is C1 and piecewise
polynomial of total degree 3. The corresponding spline space

S6 := span (M6(· − j))
j∈GZ3 (11)

contains all quadratic polynomials and has approximation order 3.
The sequence (M6(· − j))

j∈GZ3 is linearly independent.

Proof. By Section 3, M6 is piecewise polynomial of (total) degree
6 − 3 = 3. Since at most 3 directions lie in a plane, we conclude

m(Ξ6) = m(eΞ6) = (6 − 3) − 1 = 2. This implies that the splines
are C1, that all quadratics lie in the space [8, (II.59)] and that the

approximation order is 3 [8, (III.1)]. The structure of the matrix eΞ6

makes it easy to verify that all triples of directions form invertible
matrices Z ∈ R

3×3 except for

[ξ̃2ξ̃4ξ̃6], [ξ̃1ξ̃4ξ̃5], [ξ̃1ξ̃3ξ̃6], [ξ̃2ξ̃3ξ̃5].

Since the determinants of all remaining elements are ±1, (3) implies
that the sequence (M6(· − j))

j∈GZ3 is linearly independent.

Approximation order 3 can be achieved by the following quasi-
interpolant.
Lemma 2 (quasi-interpolant). A quasi-interpolant Q6 for S6 repro-
ducing quadratic polynomials is defined by the functional

λ6f := f(0)−
1

24

X

ξ∈Ξ6

(D2
ξf)(0). (12)

Proof. Following the construction suggested in [8], the quasi-
interpolant Qe6

for the spline space

Se6 := span (Me6(· − j))
j∈Z3

is defined by the functional

λe6f =f(0)−
1

8
((D2

1 + D
2
2 + D

2
3)f)(0)

+
1

12
((D1D2 + D2D3 + D3D1)f)(0)

=f(0)−
1

24
((D2

1 + D
2
2 + D

2
3

+ (D1 −D2)
2 + (D2 −D3)

2 + (D3 −D1)
2)f)(0)

=f(0)−
1

24

X

ξ∈eΞ6

(D2
ξf)(0).



By (7), the quasi-interpolant Q6 for S6 can be obtained from λe6
by

replacing Dξ with DGξ and this yields the claim.

For a discrete input f : GZ
3 → R, approximating D2 with central

differencing yields

λ6f ≈
3

2
f(0)−

1

24

X

ξ∈Ξ6

(f(ξ) + f(−ξ)), (13)

where the right hand side averages the 12 first-ring neighbors around
a FCC lattice point.

4.3 The polynomial pieces and evaluation of the FCC
spline

Since M6 is centered at the origin, the mesh Γ6 generated by M6 is
the same as Γ(Ξ6) but shifted by (1, 1, 1). The non-axis-aligned knot
planes of M6 decompose R

3 into octet-truss [15] structures (Figure 4)
and the axis-aligned knot planes decompose each octahedron further
into eight congruent tetrahedra such as the one shown in Figure 5a.
Note that, the equilateral tetrahedron with blue edges in Figure 5b
is decomposed into four tetrahedra (cyan tetrahedron in this figure)
by the Voronoi cell of the FCC lattice. However, this equilateral
tetrahedron is not split by knot planes and hence is the domain of a
single polynomial piece, not of four. Shifting the truncated octahedron
(Figure 2b) that represents the support of M6, we find that 16 different
shifts of M6 overlap at any generic location. In other words, the size
of the stencil of our reconstruction (set of coefficients to evaluate a
given point) is 16.

Lemma 3 (reconstruction cost). Reconstruction at an arbitrary point
depends on at most 16 FCC points.

Proof. The set of all the square invertible sub-matrices of eΞ6 identi-
fied in Lemma 1 contains

`
3+3
3

´
−4 = 16 elements. The claim follows

by [8, (II.57)] and [8, (II.32)].

Fig. 4: The octet-truss structure: layers of octahedra in an egg carton
pattern with two types of tetrahedra filling in the voids.

To evaluate a spline s ∈ S6 at x ∈ R
3 via the polynomial form, let ẋ

be the nearest FCC lattice point from x. Since the setup is symmetric
with respect to the three axes, we need only consider the (+, +, +)
octant. There are two types of tetrahedra, σ− and σ+,

σ− σ+

v0 0,0,0 1,1,1
v1 1,0,0 0,1,0
v2 0,1,0 1,0,0
v3 0,0,1 0,0,1

(14)

3 2 1 0 2 1 0 1 0 0 2 1 0 1 0 0 1 0 0 0
α 0 1 2 3 0 1 2 0 1 0 0 1 2 0 1 0 0 1 0 0

0 0 0 0 1 1 1 2 2 3 0 0 0 1 1 2 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 3

J−

0, 0, 0 12 12 8 4 12 12 8 8 8 4 12 12 8 12 12 8 8 8 8 4
0, 1, 1 1 1 2 2 4 4 4 2 2 4 4 8 4 4 8 4
1, 0, 1 1 2 4 4 1 2 4 2 4 8 2 4 4 8 4 4
1, 1, 0 1 2 4 4 2 4 8 4 8 4 1 2 4 2 4 4

-1, 0, 1 1 1 2 2 4 4 4
-1, 1, 0 1 2 4 4 1 2 4
0,-1, 1 1 1 2 2 4 4 4
0, 1,-1 1 1 2 2 4 4 4
1,-1, 0 1 2 4 4 1 2 4
1, 0,-1 1 2 4 4 1 2 4
0,-1,-1 1 1

-1, 0,-1 1 1
-1,-1, 0 1 1
2, 0, 0 4
0, 2, 0 4
0, 0, 2 4

J+

0, 0, 0 4 4 4 8 4 8 4 4 8 4 12 8 4 8 8 4
0, 1, 1 4 8 8 4 4 4 4 8 12 8 4 4 8 8 4 4
1, 0, 1 4 4 8 4 8 4 4 8 4 12 4 8 8 4 8 4
1, 1, 0 4 8 8 4 8 12 8 8 8 4 4 4 4 4 4 4
1, 1, 2 4 4
1, 2, 1 4 4
2, 1, 1 4 4
0, 2, 0 4 4

-1, 1, 0 4 4
0, 1,-1 4 4
2, 0, 0 4 4
1,-1, 0 4 4
1, 0,-1 4 4
0, 0, 2 4 4

-1, 0, 1 4 4
0,-1, 1 4 4

Table 1: BB-coefficients (scaled up by 24) of the polynomial pieces
of type J− and J+. The columns index the BB-coefficients by their
barycentric coordinates (scaled up by 3) with respect to the vertices
in (14) and the row indices are the shifts of the box spline M6 to the
positions marked in Figure 5.

in the Voronoi cell of ẋ (Figure 5). Correspondingly, for ex := x − ẋ
in the (+, +, +) octant,

s(x) :=
X

k∈GZ3

a(k)M6(x − k) (15)

=

(P
j∈J

−

a(ẋ + j)Bj
−(β−(ex)) if‖ex‖1 ≤ 1 (type−)

P
j∈J+

a(ẋ + j)Bj
+(β+(ex)) if‖ex‖1 > 1 (type+).

where (for ∗ ∈ {−, +}),

• J∗ := {j ∈ Z
3 : M6(ex − j) 6= 0, ex interior of σ∗} denotes the

stencil, the set of 16 FCC shifts of the box spline (Figure 5 and
row indices in Table 1);

• B
j
∗(u) :=

P
|α|=3 c

j
∗(α)bα(u) is the polynomial in Bernstein-

Bézier (BB) form associated with the shift j of type ∗ via its BB-

coefficients {cj
∗(α)} listed in Table 1. Here {bα(u) :=

`
3
α

´
u

α :P3
i=0 |α(i)| = 3, α ∈ Z

4
+} are the well-known BB basis poly-

nomials [6, 14];

• β∗(ex) the barycentric coordinate of ex with respect to the domain
tetrahedron σ∗ (Figure 5 and (14)).

The BB-coefficients in Table 1 have been computed with a symbolic
tool.

Algorithm 2 implements (15) taking symmetry into account, i.e. shows
the pseudocode for evaluating a spline in S6 at x. (We write σσσz to in-
dicate (σσσz)(j) := σ(j)z(j) for j = 1, 2, 3. Also the assignment
σσσ ← sign(ex) is coordinate-wise.) We first transform x to the local
coordinate ex depending on the type, − or +, and leveraging symme-

try, we sum the 16 polynomials {Bj
∗ : j ∈ J∗} defined in Table 1

weighted by their coefficients a(j). (C++ sample codes can be found
at http://www.cise.ufl.edu/research/Surflab/08vis.)

5 RECONSTRUCTION

There are three approaches to reconstructing a function in terms of M6

from data on the FCC lattice:

• approximation: interpret data as control points of the shifts of
M6,
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(b) σ+: ‖ex‖1 > 1

Fig. 5: Two congruence classes of tetrahedra: (a) σ− and (b) σ+. 16 lattice points, of which 13 are shared between the two types, determine
the polynomial piece on σ∗, ∗ ∈ {−, +}. All other polynomial pieces can be obtained from σ− and σ+ by symmetry. The black lines of the
rhombic dodecahedron delineate the Voronoi cell of the FCC lattice. The 16 FCC points marked in each figure, are used as row indices to select
BB-form coefficients of the resulting spline in Table 1.

Algorithm 2 Evaluation of the FCC spline at x ∈ R
3

ẋ← nearest FCC lattice point from x
ex← x − ẋ
σσσ ← sign(ex)
if ‖ex‖1 ≤ 1 then

y ←
P

j∈J
−

a(ẋ + σσσj)Bj
−(β−(σσσex))

else
y ←

P
j∈J+

a(ẋ + σσσj)Bj
+(β+(σσσex))

end if
return y

• quasi-interpolation: pre-process the data according to (13), or

• interpolation: compute the coefficients by solving the linear sys-
tem.

Let f : GZ
3 → R be the discrete FCC dataset and a spline is repre-

sented as (15). Interpreting data at f(j) as control points, i.e. setting
a(j) := f(j), is clearly the most convenient option but results in
additional smoothing and shifts of the level sets that are some times
undesirable. Interpolation on the other extreme, while always possible
because the linear systems for interpolation are invertible (Lemma 1),
has a prohibitive cost for large data sets. Moreover, while the data are
now exactly interpolated, the rationale for doing so is weak since the
data are typically the result of filtering and discretization; so pointwise
exact replication by itself says little about the fidelity of the recon-
structed function. In fact, spline interpolation is well-known to suffer
from a ringing phenomenon [20] where gradients change rapidly. Our
method of choice is therefore quasi-interpolation since it balances cost
and approximation quality: the approximation power matches that of
interpolation, but with a small, local footprint.

Choosing quasi-interpolation, the coefficients in (15) are

a(j) := λ6(f(·+ j)) =
3

2
f(j)−

1

24

X

ξ∈Ξ6

(f(j + ξ) + f(j − ξ)).

Equation (15) and Table 1 then define the polynomial pieces of the
reconstructed function. The function can then be evaluated, for ex-
ample, using de Casteljau’s algorithm [6, 14] and exact level sets can
be rendered by ray-tracing (see Section 6). All images in this work
are rendered from reconstruction of data after quasi-interpolation (i.e.,
pre-filtering).

6 COMPARISON OF C1 CARTESIAN VS. FCC SPLINE RECON-
STRUCTION

(a)

(b)

Fig. 6: Benchmark datasets: (a) Carp dataset at the res-
olution of 256 × 256 × 512 (density 1) reconstructed
by quasi-interpolating triquadratic B-spline (Courtesy of
http://www9.informatik.uni-erlangen.de/External/vollib).
This relatively high-resolution dataset is used as the standard ‘truth’
function for our experiments at low resolutions. (b) Marschner-Lobb
test function.

Volumetric data are traditionally sampled and reconstructed on the
Cartesian lattice. A suitable anti-aliasing filter is applied to band-limit
the spectrum of the sampled data within the Nyquist region, which
is the Voronoi cell of the dual lattice. The FCC lattice cell is clearly
different from the Cartesian and therefore testing FCC sampling and
reconstruction on real-life datasets is only possible once true FCC
sampling devices are available. We constructed comparable FCC and
Cartesian datasets by subsampling a high-density Cartesian dataset
into coarser FCC and Cartesian datasets with comparable resolutions.

We experimented with the Marschner-Lobb benchmark dataset (Fig-



ure 6b) for evaluating the accuracy of reconstruction algorithms [20].
Figure 8 compares three reconstruction methods on different lattices
and filters described in Table 3. It demonstrates reduced aliasing in
the FCC method compared to the commonly-used Cartesian method.
In particular, the circular rims are almost perfectly reconstructed in
the FCC method while the Cartesian method shows severe oscilla-
tions. Compared with the BCC method, the FCC method captures
the ‘valley’ of the original function better than the BCC method where
the valleys are smoothed out due to the higher degree filter. This can
also be justified by the higher smoothing metric of the reconstruction
filter of the BCC method (Table 3). But the FCC method shows high-
frequency artifacts on the isosurface which do not appear in the BCC
method. In any case, it is obvious that both reconstruction methods
show superior results than the Cartesian method. Figure 7 shows an-
other reconstruction of ML dataset and their corresponding error im-
ages. The angular error, capped at 0.2 radians, is mapped to white
and 0 error to black. Increased blackness in the FCC method implies
increased accuracy.

(a) (b)

(c) (d)

Fig. 7: Marschner-Lobb test images (see page 5). (a) (c) C1 recon-
struction on Cartesian with 41 × 41 × 41 = 68, 921 samples and (b)
(d) C1 reconstruction on FCC with 25 × 25 × 25 × 4 = 62, 500
samples. (Right) the angular error, capped at 0.2 radians, is mapped
to white and 0 error to black. Increased blackness from left to right
implies increased accuracy.

For our experiments, we used the Carp fish dataset of original reso-
lution of 256 × 256 × 512 (density 1, see Figure 6a). This dataset
was subsampled to 100 × 100 × 200 resolution using a rational sub-
sampling scheme. For this subsampling, a proper upsampling opera-
tion was applied by zero-padding in the frequency domain so that a
downsampling operation produces the target resolution of 100. We
performed the equivalent rational subsampling to a Cartesian volume
of resolution 126 × 126 × 126 to obtain the matching resolution on
the FCC lattice. Then this Cartesian volume is simply downsampled
onto a FCC lattice by retaining Cartesian points whose sum of coor-
dinates are even, halving the number of samples. Hence the resulting
FCC lattice is of resolution 63 × 63 × 126 × 4 which is very close
to the Cartesian volume The images are rendered with (customized)
POV-Ray (http://www.povray.org).

Figure 9 compares C1 reconstruction on the FCC and Cartesian lat-
tices (see Table 3). As can be seen, the FCC method captures the
detailed features of the dataset better than the Cartesian method. Most

of the ribs in the Cartesian data set are disconnected while on the FCC
data set are mostly connected. Also staircase artifacts on the Cartesian
method are more severe (see, e.g., the ribs area of Figure 9). It is clear
that the Cartesian method has difficulty to capture the features that are
not axis-aligned.

6.1 Computational Cost

Another advantage of the FCC method is the efficient evaluation.
Since the number of neighbor samples (stencil size) required to eval-
uate a point is small (16 compared to 27 for the Cartesian method),
it takes less time to evaluate the reconstructed field if the memory ac-
cess introduces relatively big overhead. This overhead becomes dom-
inant, due to cache miss, as the dataset size grows. For example, while
it takes 125 seconds to generate Figure 7a, it takes only 98 seconds
(72%) to generate Figure 7b. These images were rendered at the reso-
lution of 500 × 500 pixels. Table 2 compares the time for raycasting
the images in this paper. These experiments were performed on a dual
core Intel 2.13 GHz machine with 2 GB memory.

Dataset Cartesian FCC Ratio

Marschner-Lobb 135 98 72%
Carp-Fish 515 358 69%

Table 2: Rendering time (in seconds) to generate ray-casted images in
Figure 7.

6.2 Reconstruction Properties

Our proposed box spline reconstruction on the FCC lattice has the
same approximation order and continuity as that of the triquadratic B-
spline on the Cartesian lattice. A similar reconstruction on the BCC
lattice is not presently known: smooth reconstruction is only available
as a 8-direction box spline[13]. Table 3 summarizes the reconstruction
properties of these schemes.

Smoothing and post-aliasing metrics have been proposed to compare
reconstruction schemes [20]. In table 3, we show these metrics, nu-
merically evaluated. While both smoothing and post-aliasing mea-
sures are relatively close, the FCC box spline filter has less smoothing
artifacts but more post-aliasing artifacts compared to the triquadratic
B-spline.

C1 on FCC C1 on Z
3 C2 on BCC

filter M6 M333 8-dir. box spline
degree 3 6 5

approx. order 3 3 4
stencil size 16 27 32
smoothing 0.804381 0.841865 0.852867

post-aliasing 0.0114894 0.00825702 0.00401669

Table 3: Reconstruction properties of FCC box spline, Cartesian tri-
quadratic B-spline, and the BCC box spline.

7 DISCUSSION AND EXTENSIONS

Despite their theoretical advantage, non-Cartesian lattices have only
had a limited impact on practical applications. On one hand, there are
no acquisition strategies that take advantage of the superior sampling
on optimal non-Cartesian lattices; on the other hand, major signal pro-
cessing tools, such as reconstruction, to process and analyze the result-
ing data have been missing. This paper addresses the second issue, and
thereby motivates engineering research into the first, by providing an
efficient reconstruction algorithm for data on the FCC lattice. To this
end, we introduced the 6-direction box spline M6, derived its simple



(a) (b) (c)

Fig. 8: Comparison of three reconstruction methods with sampling densities: top row 0.05−3, middle row 0.06−3, and bottom row 0.07−3. (a)

C1 on FCC (copper with red cross section) and C2 on BCC (silver with green cross section) juxtaposed. (b) the view point and slicing plan
rotated by 45 degrees. (c) shows the corresponding C1 on the Cartesian lattice.

quasi-interpolant formula and showed fast and exact evaluation via in
piecewise polynomial form.

In this work, we have not yet taken full advantage of the low alge-
braic degree of the level sets of M6. In principle, we can parametrize
the isosurfaces of the trivariate cubic polynomial pieces of the spline
based on M6 [1] and then explicitly write out all ray intersections. (By
comparison, the ray-isosurface intersection for M333 can generically
only be computed numerically.) Our current implementation (i.e., with
POV-Ray ) accepts only the evaluator of an implicit function and not
the exact location of the ray-level intersection, we did not exploit this
low polynomial-degree property to expedite the ray-intersection oper-
ations.
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