Box Spline Reconstruction on the Face-Centered Cubic Lattice

Minho Kim, Alireza Entezari and Jörg Peters

IEEE Visualization 2008 23 October

Box Spline Reconstruction on the Face-Centered Cubic Lattice

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲□▶

reconstruction

Box Spline Reconstruction on the Face-Centered Cubic Lattice

▲□▶▲圖▶★≣▶★≣▶ ≣ のQ@

Box Spline Reconstruction on the Face-Centered Cubic Lattice

Box Spline Reconstruction on the Face-Centered Cubic Lattice

▲□> <圖> < ≧> < ≧> < ≧</p>

Box Spline Reconstruction on the Face-Centered Cubic Lattice

Box Spline Reconstruction on the Face-Centered Cubic Lattice

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Box Spline Reconstruction on the Face-Centered Cubic Lattice

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Box Spline Reconstruction on the Face-Centered Cubic Lattice

Integrated with POV-Ray ray-tracer and source codes are freely available at http://www.cise.ufl.edu/research/SurfLab/08vis.

Example

standard method

 $\mathbf{100\%}$

6% FCC lattice 6-direction box spline

<ロ> (四) (四) (三) (三) (三) (三)

Example

◆□ → ◆昼 → ◆臣 → ◆臣 → ◆ ● ◆ ◆ ● ◆

Sampling Lattice: FCC Lattice

◆□ > ◆□ > ◆ 三 > ◆ 三 > 三 の < ⊙

<□> <畳> <≧> <≧> <≧> <≧< ≥ のQで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Cubic (Cartesian) lattice

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Cubic (Cartesian) lattice + additional facet points

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Cubic (Cartesian) lattice + additional facet points \rightarrow "Face-Centered Cubic" lattice.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲□▶

◆□ ▶ ◆■ ▶ ◆ ■ ◆ ● ◆ ● ◆ ● ◆

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□ ▶ ◆■ ▶ ◆ ■ ◆ ● ◆ ● ◆ ● ◆

◆□ ▶ ◆■ ▶ ◆ ■ ◆ ● ◆ ● ◆ ● ◆

くしゃ (中)・(中)・(中)・(日)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $12\ {\rm nearest}\ {\rm neighbor}\ {\rm points}$

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

- $12\ {\rm nearest}\ {\rm neighbor}\ {\rm points}$
- \rightarrow Voronoi cell = **Rhombic Dodecahedron**.

FCC Lattice: Applications

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

FCC Lattice: Applications

 Sampling efficiency: Cartesian < FCC < BCC. (Petersen & Middleton '62)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

FCC Lattice: Applications

 Sampling efficiency: Cartesian < FCC < BCC. (Petersen & Middleton '62)

Efficient sampling: minimizes number of samples necessary to reconstruct an isotropic band-limited signal.

 Multiresolution data structure (Inoue et al. 2008), Global illumination (Qiu et al. 2007),

Reconstruction Filter: 6-Direction Box Spline

◆□ > ◆□ > ◆ □ > ◆ □ > □ = のへで
▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Direction matrix $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Direction matrix $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$

Direction matrix $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$

Direction matrix $\begin{bmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

• Finite support: Minkowski sum of the directions.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Finite support: Minkowski sum of the directions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

► Piecewise polynomial of degree (# of directions - dim ranΞ).

- Finite support: Minkowski sum of the directions.
- Piecewise polynomial of degree (# of directions - dim ran \mathbf{\exist}).
- Polynomial pieces delineated by the shifts of the *knot planes* (Hyperplanes spanned by the directions of Ξ).

- Finite support: Minkowski sum of the directions.
- ► Piecewise polynomial of degree (# of directions - dim ranΞ).
- Polynomial pieces delineated by the shifts of the *knot planes* (Hyperplanes spanned by the directions of Ξ).
- Polynomial pieces join **smoothly**: $C^{(m(\Xi)-1)}$.

- Finite support: Minkowski sum of the directions.
- Piecewise polynomial of degree (# of directions - dim ran \mathbf{\exist}).
- Polynomial pieces delineated by the shifts of the *knot planes* (Hyperplanes spanned by the directions of Ξ).
- Polynomial pieces join **smoothly**: $C^{(m(\Xi)-1)}$.
- "Box Splines" (Carl de Boor et al., 1993).

Box Splines vs. B-splines

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

higher approximation order,

- higher approximation order,
- smaller support and

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- higher approximation order,
- smaller support and
- higher symmetry.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

$$\blacktriangleright \text{ Direction matrix } \begin{bmatrix} 1 & -1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & -1 & 1 & 1 \end{bmatrix}.$$

▲ロト ▲母 ト ▲ ヨ ト ▲ ヨ - 一 の へ ()

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

Support = **Truncated Octahedron**.

- Support = **Truncated Octahedron**.
- ▶ Total degree cubic and C¹ continuous.

- Support = **Truncated Octahedron**.
- ► Total degree cubic and C¹ continuous.
- Approximation order is 3.

- Support = **Truncated Octahedron**.
- ► Total degree cubic and C¹ continuous.
- Approximation order is 3.
- Exact rational coefficients are pre-computed.

6-Direction Box Spline (cont'd)

(日) (四) (三) (三)

э

Polynomial Structure: Octet-Truss

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三里 - 釣�?

▲ロ▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへぐ

<□> <圖> < E> < E> E のQ@

<□> <圖> < E> < E> E のQ@

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

> Polynomial structure \rightarrow octet-truss structure.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Polynomial structure \rightarrow octet-truss structure.
- ▶ Shifts are linearly independent → *basis* functions.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三重 - のへぐ

	Standard	Our approach
lattice	Cartesian	FCC
filter	tri-quadratic B-spline	6-direction box spline

	Standard	Our approach	
lattice	Cartesian	FCC	
filter	tri-quadratic B-spline	6-direction box spline	
polynomial structure	cubes	octet-truss	

	Standard	Our approach	
lattice	Cartesian	FCC	
filter	tri-quadratic B-spline	6-direction box spline	
polynomial structure	cubes	octet-truss	
approximation order	3	3	

	Standard	Our approach	
lattice	Cartesian	FCC	
filter	tri-quadratic B-spline	6-direction box spline	
polynomial structure	cubes	octet-truss	
approximation order	3	3	
total degree	6	3	

	Standard	Our approach	
lattice	Cartesian	FCC	
filter	tri-quadratic B-spline	6-direction box spline	
polynomial structure	cubes	octet-truss	
approximation order	3	3	
total degree	6	3	
stencil size	27	16	

	Standard Our approach		
lattice	Cartesian	FCC	
filter	tri-quadratic B-spline	ie 6-direction box spline	
polynomial structure	cubes	octet-truss	
approximation order	3	3	
total degree	6	3	
stencil size	27	16	
sampling efficiency	poor	good	

Comparison: Reconstuction (Carp dataset)

6% Cartesian lattice tri-quadratic B-spline

6% FCC lattice 6-direction box spline

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のへで

density 0.07^{-3}

Standard

Our approach

・ロト ・ 雪 ト ・ ヨ ト

density 0.06^{-3}

Standard

Our approach

density 0.05^{-3}

Standard

Our approach

(日)、

э

Comparison: Computation Time

Dataset	Standard	Our approach	Ratio
Marschner-Lobb	135	98	72%
Carp	515	358	69%

Rendering time (in seconds) to generate ray-casted images.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

For more information, please visit

http://www.cise.ufl.edu/research/SurfLab/08vis

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Thank you!

Selected References

- Carl de Boor, Klaus Höllig, and Sherman Riemenschneider, Box splines, Springer-Verlag New York, Inc., New York, NY, USA, 1993.
- Minho Kim and Jörg Peters, *Fast and stable evaluation of box-splines via the BB-form*, Numerical Algorithms (2008), in print.
- Daniel P. Petersen and David Middleton, Sampling and reconstruction of wave-number-limited functions in N-dimensional euclidean spaces, Information and Control 5 (1962), no. 4, 279–323.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <