

Realtime Loop Subdivision on the GPU http://www.cise.ufl.edu/research/SurfLab

al. showed that, in principle, all major features of subdivision algorithms

challenge 4: watertight boundaries By observing symmetries, identical points can be generated consistently on different mesh fragments. edge point *e* vertex point *V* on the boundary vertex point \mathcal{V} at the corner $e(M_1) = \frac{1}{8}(3(c+a) + (b+d)) \qquad v(M_1) = \frac{1}{16}((((b+g) + (d+e)) + (c+f)) + 10a) \qquad v(M_1) = v(M_2) = \frac{1}{16}((((b+g) + (d+e)) + (c+f)) + 10a)$ $e(M_2) = \frac{1}{8}(3(a+c)+(d+b)) \qquad v(M_2) = \frac{1}{16}((((e+d)+(g+b))+(f+c))+10a) \qquad v(M_3) = v(M_4) = \frac{1}{16}((((e+d)+(g+b))+(f+c))+10a)$

Figure 11. Symmetric evaluation for watertight boundaries between mesh fragments.

example of consistent computation

 $8 \leftarrow \frac{1}{16} \left(\left(\left(\left(2 + 9 \right) + \left(7 + 21 \right) \right) + \left(0 + 8 \right) \right) \right)$ $6 \leftarrow \frac{1}{1 \leftarrow 1} \left(\left(\left(\left(1 + 0 \right) + \left(10 + 11 \right) \right) + \left(9 + 1 \right) \right) \right) + \left(9 + 1 \right) \right)$

fps	liver		stomach		mechpart		venus	
depth config.	4	5	4	5	4	5	4	5
1	9.70	6.27	8.53	4.41	7.62	4.60	4.27	1.8
2	22.83	15.63	19.42	11.43	18.28	13.07	9.70	5.2
3	18.32	9.15	12.08	4.85	13.62	6.81	5.04	1.9
4	13.91	8.42	11.43	5.71	10.33	6.04	5.42	2.4

	CPU	GPU	system memory	video memory	# of shaders per patch ¹	off-screen rendering buffer	double buffering	buffer size	data round-trip removal
1	Pentium 4 (2.40GHz)	ATi Radeon 9700 Pro (Omega driver 2.5.97a)	1GB	128MB (AGP 4x)	2	pbuffer	no	2048x1024	none
2	Pentium 4 (3.00GHz)	nVidia GeForce 6800GT (driver 71.84)	1GB	256MB (AGP 8x)	1	pbuffer	yes	2048x256	PBO/VBO
3	Pentium M (1.60GHz)	nVidia Geforce 6200 (driver 70.87)	512MB	128MB ² (PCI Express 16x)	1	pbuffer	yes	2048x256	PBO/VBO
4	Pentium 4 (2.80GHz)	ATi Radeon X800 (Omega driver 2.5.97a)	1GB	256MB (AGP 8x)	1	pbuffer	no	2048x1024	none
1: 2:	1: For some GPUs, each shader is divided into two due to the limitation of shader length. 2: 32MB is dedicated for GPU and 96MB is shared with main memory.								

Table 2. Benchmark configurations. Note the importance of round-trip removal.

Surf Lab

$(8))+10\times 1$	$3 \leftarrow \frac{1}{16} \left(\left(\left(\left(0 + 2 \right) + \left(7 + 8 \right) \right) + \left(6 + 9 \right) \right) + 10 \times 1 \right)$
$(3))+10\times 2)$	$9 \leftarrow \frac{1}{16} \left(\left(\left(\left(4 + 10 \right) + \left(2 + 8 \right) \right) + \left(0 + 9 \right) \right) + 10 \times 3 \right)$
tion of the com	hourdance point in each of four refined much

Figure 12. Consistent computation of the same boundary point in each of four refined mesh fragments with the notation and colors of Figure 8.

mechpart venus (358/175) (1,418/711)

Figure 13. Test subdivision surfaces. (# of facets/#of vertices)